Skip to main content

Virtual Laboratory for the simulation of Macromolecular Properties

Project description

VLMP (Virtual Laboratory Massively Parallelized)

Table of Contents

Introduction

VLMP is a Python library designed for running parallelized simulations, specifically optimized for molecular dynamics and other continuous models. Built on the backend technology of UAMMD-structured, it leverages multi-level parallelization to achieve highly efficient simulation runs.

Features

  • Multi-level Parallelization: Run multiple simulations concurrently on a single GPU or distribute across multiple GPUs.
  • Optimized for Coarse-grained Models: Achieve better GPU utilization with small-scale simulations.
  • Highly Configurable: Easily adaptable for a variety of scientific phenomena.
  • Community Sharing: Distribute new models as VLMP modules.

Documentation

Coming soon.

Installation

Prerequisites

Install UAMMD-structured before proceeding. UAMMD-structured Documentation

Installing VLMP

Via pip:

pip install pyVLMP

Or clone the GitHub repository:

git clone https://github.com/PabloIbannez/VLMP.git
cd VLMP
pip install .

Verifying Installation

import VLMP

Getting Started

Here's a minimal example to simulate a set of DNA chains:

   import VLMP
   from VLMP.utils.units import picosecond2KcalMol_A_time
   from numpy import random

   # Convert picoseconds to AKMA time unit
   ps2AKMA = picosecond2KcalMol_A_time()

   # Number of sequences and sequence set size
   Nsequence = 10
   sequenceSetSize = 10

   # Length of each sequence and the basis of DNA
   sequenceLength  = 100
   basis = ['A', 'C', 'G', 'T']

   # Generate random sequences
   sequences = []
   for i in range(Nsequence):
       sequences.append(''.join(random.choice(basis, sequenceLength)))

   # Populate simulation pool
   simulationPool = []
   for seq in sequences:
       # Configure simulation parameters
       simulationPool.append({
           "system": [
               {"type": "simulationName", "parameters": {"simulationName": seq}},
               {"type": "backup", "parameters": {"backupIntervalStep": 100000}}
           ],
           "units": [{"type": "KcalMol_A"}],
           "types": [{"type": "basic"}],
           "ensemble": [
               {"type": "NVT", "parameters": {"box": [2000.0, 2000.0, 2000.0],
                                              "temperature": 300.0}}
           ],
           "integrators": [
               {"type": "BBK", "parameters": {"timeStep": 0.02*ps2AKMA,
                                              "frictionConstant": 0.2/ps2AKMA,
                                              "integrationSteps": 1000000}}
           ],
           "models": [
               {"type": "MADna", "parameters": {"sequence": seq}}
           ],
           "simulationSteps": [
               {"type": "saveState", "parameters": {"intervalStep": 10000,
                                                    "outputFilePath": "traj",
                                                    "outputFormat": "dcd"}},
               {"type": "thermodynamicMeasurement", "parameters": {"intervalStep": 10000,
                                                                   "outputFilePath": "thermo.dat"}},
               {"type": "info", "parameters": {"intervalStep": 10000}}
           ]
       })

   # Initialize VLMP and load simulation pool
   vlmp = VLMP.VLMP()
   vlmp.loadSimulationPool(simulationPool)

   # Distribute simulations and set up
   vlmp.distributeSimulationPool("size", sequenceSetSize)
   vlmp.setUpSimulation("EXAMPLE")

Execute the simulations with:

cd EXAMPLE
python -m VLMP -s VLMPsession.json --local --gpu 0 1

Workflow

  1. Simulation Configuration: Define simulation parameters.
  2. Simulation Pool Creation: Prepare multiple configurations for batch execution.
  3. Simulation Distribution: Distribute simulations across computational resources.
  4. Simulation Execution: Execute simulations on GPU using UAMMD-structured.

License

GPLv3

Contact

For issues and contributions, please contact: GitHub Issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyVLMP-1.0.59.tar.gz (105.9 kB view details)

Uploaded Source

Built Distribution

pyVLMP-1.0.59-py3-none-any.whl (158.0 kB view details)

Uploaded Python 3

File details

Details for the file pyVLMP-1.0.59.tar.gz.

File metadata

  • Download URL: pyVLMP-1.0.59.tar.gz
  • Upload date:
  • Size: 105.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pyVLMP-1.0.59.tar.gz
Algorithm Hash digest
SHA256 b195ff0323d4eaf22e859fec64a865ff4827b1e6136476882f80c9107e48a7b1
MD5 92538e5c94868c7c1ebf37a2f028cc70
BLAKE2b-256 32eb7947c76a34bc705ca58814c07df033a4d01171d293109a3061aeb2796400

See more details on using hashes here.

File details

Details for the file pyVLMP-1.0.59-py3-none-any.whl.

File metadata

  • Download URL: pyVLMP-1.0.59-py3-none-any.whl
  • Upload date:
  • Size: 158.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pyVLMP-1.0.59-py3-none-any.whl
Algorithm Hash digest
SHA256 c24edd38cb4ec1333395c27623f40d9d32042cc4549227778c34c379c5b0e755
MD5 cd0da9f31d9ba00fd96bea1c73c3194d
BLAKE2b-256 36f81c776ce239a4077246fab72ac797fe36f8369e97c291bb5c2fee65ce943f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page