Skip to main content

UNKNOWN

Project description

Overview

This is a python module for calculating global (Moran’s I [1]) and local spatial autocorrelation [1.5] using the AMOEBA algorithm [2]. This code works on shapefiles, although a base class is provided to allow the examination of other objects, e.g. from a spatial database.

Usage

The easiest way is to call autocorrelate.py with the name and path of the shapefile, e.g.:

python autocorrelate.py path/to/file/filename.shp

To use in other python programs:

from lcia_autocorrelation.ac_shapefile import AutocorrelationShapefile
ac = AutocorrelationShapefile("filepath")
ac.global_autocorrelation()

Autocorrelation calculations are made using the PySAL library; multiple measures of autocorrelation are possible.

Local Indicators of Spatial Autocorrelation (LISA)

Moran’s I is a single statistic for global autocorrelation. However, the calculation of Moran’s I involves summing the individual cross products of each spatial unit. Local indicators of spatial association (LISA) (Anselin, L. (1995). “Local indicators of spatial association – LISA”. Geographical Analysis, 27, 93-115) uses these local indicators directly, to calculate a local measure of clustering or autocorrelation. The LISA statistic is:

\begin{equation*} I_{i} = \frac{Z_{i}}{}\sum_{j}W_{ij}Z_{j} \end{equation*}
\begin{equation*} I = \sum_{i}\frac{I_{i}}{N} \end{equation*}

Where I is the autocorrelation statistic, Z is the deviation of the variable of interest from the average, and W is the spatial weight linking i to j.

We use the PySAL library to calculate LISA statistics.

Installation

Using pip:

pip install lcia-autocorrelation

Using easy_install:

easy_install lcia-autocorrelation

Requirements

The following packages are required

  • numpy

  • scipy

  • pysal

  • rtree

  • osgeo

  • django

  • progressbar

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_amoeba-0.2.3.tar.gz (8.0 kB view details)

Uploaded Source

File details

Details for the file py_amoeba-0.2.3.tar.gz.

File metadata

  • Download URL: py_amoeba-0.2.3.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for py_amoeba-0.2.3.tar.gz
Algorithm Hash digest
SHA256 ddbe215d50339df9139e2e27c913107302d9834b5750bc96b03101587801ee3d
MD5 7965f3496f6eba74fad1a862bcb09ace
BLAKE2b-256 4efbd49ef0aa26e88e9b13f6988078e6e42cee19c1831974ac1353fffd889780

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page