Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

PyPI Build

Random forests methodologies for :

  • ABC model choice (Pudlo et al. 2015)
  • ABC Bayesian parameter inference (Raynal et al. 2018)

Libraries we use :

  • Ranger (Wright and Ziegler 2015) : we use our own fork and have tuned forests to do “online”[1] computations (Growing trees AND making predictions in the same pass, which removes the need of in-memory storage of the whole forest)[2].
  • Eigen3 (Guennebaud, Jacob, and others 2010)

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114).

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, with a (currently under review) submission to MER (Molecular Ecology Resources), (F. D. Collin et al. 2020).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Fix travis build. Currently the vcpkg download of eigen3 head is broken.
  • osX travis build
  • Appveyor win32 build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (F.-D. Collin et al. 2020).

Collin, Francois David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean Michel Marin, and Arnaud Estoup. 2020. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest,” July. https://doi.org/10.22541/au.159480722.26357192.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, and others. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–8.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable Abc Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–8. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” arXiv Preprint arXiv:1508.04409.

[1] The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[2] We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.37.tar.gz (51.4 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.37-cp39-cp39-win_amd64.whl (618.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyabcranger-0.0.37-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.37-cp38-cp38-win_amd64.whl (618.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyabcranger-0.0.37-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.37-cp37-cp37m-win_amd64.whl (618.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyabcranger-0.0.37-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyabcranger-0.0.37-cp36-cp36m-win_amd64.whl (618.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyabcranger-0.0.37-cp36-cp36m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.37.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.37.tar.gz
  • Upload date:
  • Size: 51.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37.tar.gz
Algorithm Hash digest
SHA256 50a7bd875ea49eee93ba0433266c0a6373534d166bdc5f11a348ca05812fcc4f
MD5 b670981879d18ff32aac1ce8f12ed28e
BLAKE2b-256 41a539bcb7728c1163e6ade586e5b4d28beb6ece6cf2e158d3bb6ef9dd239c56

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 618.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10cd11fbaf9b1ca03759c5d73febcca5ce32fe21c550e49e31d3441b622478a4
MD5 1fb86961f1e8a19c81bf25bb8f81a5da
BLAKE2b-256 fcacf6a57b572f42f07536f4a5d016526948dd3d49f040434632baf3f4aa6118

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b48856b3604c3a5bf2319f22e7f4af93e325087f603ba2cb8fd2e311c6b1382c
MD5 e54d118d825fbbc5117819ab85f20815
BLAKE2b-256 fde0d95c5b209caed29a7828fb29610e41cc32f380c223be7626e0eef7001ef4

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67b7498363f09e3742d7095b712ca0e36b5630c1be7fea9c737f5c3de0efbae2
MD5 2a6079cfbedf128a3e1d447161003add
BLAKE2b-256 daf17c4dbdc8f195507766f59c46cd86c472a0da70c30090fb9405911647fd8d

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 618.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6f0e7871b7a8e96139c18f6466ee86f03927dc5f0a99e817eb139129dae8688c
MD5 0b44c826bf13359ccc1e0b6844afdc47
BLAKE2b-256 bdf446b7ea2c732c248a9523b387e7411621f11f560205954f0809727807885f

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d546a466c53a8e04a7dbe8af576abb2c44fcfe4592da2e5be4e28b0fa13b91d4
MD5 b30e1af121dd65b178219e7a2096c324
BLAKE2b-256 dcf1628b5f8e0da597e6919a10f111b934f02773411334ede54e410d3eb43719

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0f9eec8026ad86e918071f6f2b5639c35e3b4ceedb9402e8a6b67090014add7
MD5 e4c109b7b8587d2b3f8d59f2b5c13a43
BLAKE2b-256 33572a83b057bbac879066699413d7e745d39b87e2b85157c664e0cae4b8b681

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9b71e402bd0ff74503379c6fba61cc25f906d2e1ec285cedd1fde8247a4df7e9
MD5 306bff94cd5351b143b1ae9eac16cb59
BLAKE2b-256 390456feabc6a13320247216342fdf29e88127a758a2b056d11de09ecf668e37

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c828e607f06e691808c841e5dba4ac80d989dc2fc3f2d61c28c3f35a0b24aef
MD5 0a19fdfa47406f96c39db204f749659a
BLAKE2b-256 1d9fa44826f61b380910e8d1f17859fc60184cb5de6062c4666daeed853a9702

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66d4e4f9dbbb3a48b32df524d5084cd3ea5eaeda0c9c61ab3095220f17505af6
MD5 7856f0d87f9aa71accd42cf12bed8ff7
BLAKE2b-256 d7e24c0a658127a6d8490d625ce6cc53c0a17768c5f9989da613ebf4e48a4bbd

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 58bfe396bce5c07c9538f9411c7f18852c7ec4e8c371fa3d31a574675ee2ca55
MD5 6e242ad08a6d97e466f4187e296fa43d
BLAKE2b-256 5529d462fdeab93fb1e45636338cacfce713a58d74ff802276543cde4fc2b4e1

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99e6dca7f6dd7a542f871be6632a1b03d970da3f089bab1985dbe32ad28353cf
MD5 55db2d5cd191a6660e082a2ce52b3bea
BLAKE2b-256 1153a61c21a3e3312a04d9393ded4575d2de049051e3f97c66cc8c9fc0e879f9

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.37-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyabcranger-0.0.37-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pyabcranger-0.0.37-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d959503f43bfd72c6c2bf220542126c7005b64d5494213f8009b1dce9dcd8f31
MD5 d51d918eefaf0147cf67cb4ff00a4b0b
BLAKE2b-256 cff6401560245c88233e4412501ff987aa9c07ac0163a5619b6617011dd9662c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page