Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114).

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, with a (currently under review) submission to MER (Molecular Ecology Resources), (Collin, Durif, et al. 2020).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Fix travis build. Currently the vcpkg download of eigen3 head is broken.
  • osX travis build
  • Appveyor win32 build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin, Estoup, et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean Michel Marin, and Arnaud Estoup. 2020. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest,” July. https://doi.org/10.22541/au.159480722.26357192.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, and others. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[1] The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning.” We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[2] We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.56.tar.gz (54.4 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.56-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.56-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.56-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.56-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.56-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.56-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.56-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.56-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.56.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.56.tar.gz
  • Upload date:
  • Size: 54.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for pyabcranger-0.0.56.tar.gz
Algorithm Hash digest
SHA256 c9e34482f4bfac201fb32751497e0a79e20d1fb94892390c3046b6f9f06da8a2
MD5 51d79b637cb46d1c18ef70c5346b247e
BLAKE2b-256 d6451b573aef866df7d84f556b8c9308ff1f2dbe0354e4a881c7d2e205029968

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d906aed25d998e8bb9089f1368c818fefc0881eabc691ed6311b4b481ddff5e
MD5 2ba15e35afaef22440a77e08e33e2c59
BLAKE2b-256 634c8d6bee0bbf225c6fe138a14b5c63450819180939d7c6b13124bcb042ec15

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7230ed561825e50d3f272b4d1697c1de5dc0ce2290fec4ec6230b56f276427e6
MD5 b8631e395c09eeee3b1a898fd42f194e
BLAKE2b-256 b6396ffe3a30e46a4707eb4616064d2f15ccca5ecfc4a46a4ad08a6f07b6d6f9

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b1ab5673f7f1c898768d24f04d5c565291873387525dc1523f686235eb5109d
MD5 6f3a05ead9e8677d987b33c1dc3f126c
BLAKE2b-256 d6dfdf6af9fb7bc135a6dc2652b50e26b93d1eb21dc0aaa0c7a9a74e7464a41b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a123107e5c2904218195552306318624e203ee3bf601841a11ef90344c33c679
MD5 c846caac59a2c7d13dbe182a571700af
BLAKE2b-256 8d01519bb2297957fa89e9224aa4f59f65ba3c87316075ccb4e956b5550858c2

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ce987efe013d3cb83d4c25e07dcf62d6fe5c1d38558168c69336b2dad34245e
MD5 3eefb72d1346410e2f46d4eb0ea73759
BLAKE2b-256 44bd82eb17616bef89701ce4df71f220899561f834d4d604dc4c63fa79f21d4e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32acd513e0bbeb4c0bd6a05f36447f4ba4303fb9d4e89c0ed8ddf58b68842e62
MD5 38f990c1d1b9dc32621c93d7baa1d248
BLAKE2b-256 e1acc32e25191987a419e58676ddd57d33106a1f6d2adfa45ac8c8d71b3a730c

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b1b85c43ddb5c37bee7c6afde3c1ce24ef8a109f7e1f13b21d6362506d68a2a
MD5 a6af18e372b5629af03faf51293e4743
BLAKE2b-256 42afead37e885df07b0acd331cfb0e81a99d76072e4c7bd5a5dd81c9cc6b810e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.56-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.56-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6bf251857f83ba44e01b9c0c4f29f8b132c199e254061b254ef477f50503f42
MD5 b8a9f55704a01e141ba9876bf56d8939
BLAKE2b-256 52293a3b87d412dfb1c28ea4fe60d1c58c93e71c369ee8f79dd7479c3dfa120b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page