Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

ABC random forests for model choice and parameters estimation

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with Intel’s Math Kernel Library, in order to leverage multicore and SIMD extensions on modern cpus.

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, presented in MER (Molecular Ecology Resources, Special Issue), (Collin et al. 2021).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

Various

Partial Least Squares algorithm

  1. X_{0}=X ; y_{0}=y
  2. For k=1,2,...,s :
    1. w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}
    2. Normalize w_k to 1
    3. t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}
    4. p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    5. X_{k}=X_{k-1}-t_{k} p_{k}^{T}
    6. q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    7. u_{k}=\frac{y_{k-1}}{q_{k}}
    8. y_{k}=y_{k-1}-q_{k} t_{k}

Comment When there isn’t any missing data, stages 2.1 and 2.2 could be replaced by w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|} and 2.3 by t_{k}=X_{k-1}w_{k}

To get W so that T=XW we compute :

\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}

where \widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right] where \mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Linux CI build with intel/MKL optimizations
  • osX CI build
  • Windows CI build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean-Michel Marin, and Arnaud Estoup. 2021. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest.” Molecular Ecology Resources 21 (8): 2598–2613. https://doi.org/https://doi.org/10.1111/1755-0998.13413.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Lintusaari, Jarno, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. 2018. “ELFI: Engine for Likelihood-Free Inference.” Journal of Machine Learning Research 19 (16): 1–7. http://jmlr.org/papers/v19/17-374.html.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[^1]: The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[^2]: We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.62.tar.gz (56.0 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.62-cp311-cp311-win_amd64.whl (613.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyabcranger-0.0.62-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.62-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyabcranger-0.0.62-cp310-cp310-win_amd64.whl (613.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyabcranger-0.0.62-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.62-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.62-cp39-cp39-win_amd64.whl (612.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyabcranger-0.0.62-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.62-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.62-cp38-cp38-win_amd64.whl (613.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyabcranger-0.0.62-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.62-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.62-cp37-cp37m-win_amd64.whl (614.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyabcranger-0.0.62-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.62-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.62.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.62.tar.gz
  • Upload date:
  • Size: 56.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyabcranger-0.0.62.tar.gz
Algorithm Hash digest
SHA256 e9d145f60b80788aca28807bbb82a4a9736210d298cab42f4be229b56d600163
MD5 77e8c66017d1e8b7bf04766b168af6f7
BLAKE2b-256 680a15d1cb0c3933fba148699b1baedd67ff764d018778ca8dd65f3a1f09c095

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ace4e8829ca2318468be2fe39b9442af0f850a1c06c193df2b61b3e4ca483259
MD5 e1536cf3845f2970a6b976820a7ac6e0
BLAKE2b-256 30a9e7ac08f97f20e62e8792c7003528da433050495c07aa6b175565b2070918

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f12d67cc9b8092aea75dd84f8ce400e13688d967fc605ec6e7c79065fffcf4ac
MD5 cb73accaf66acb0f1be142a622da9f35
BLAKE2b-256 44cc52b244ded811ff09cec2f61f2bd92f4b1b1d617eed8f955a22d160f3d781

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 209fe499e25e3260b57cc6ade7f8c992b9b70ee5c50a7987514d9e749e3c9e04
MD5 fe79c857ab7dd2fd354bc5bd8d224009
BLAKE2b-256 7293a75f06ac297742c3e3375bd21d6d3ad8a3f34c154013008bd80e23da7743

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 68610cee09c84ea89498ab26850f113322f460a25ffa81e171c4ab8aafbaea4f
MD5 d8e6c8614a02d4798137f1132ca9732a
BLAKE2b-256 890680d3e92d5c1285baffeba0661a572a6d8f04e900b301baec4507cad7a0e8

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e647b5993a6c32065ea16c68896e4ebed048eee20ef729d9cf74da16ca0e6ef3
MD5 d92511e0587f223b2399eb41764a61a4
BLAKE2b-256 ca319bdf10570281f07a93b3b8d12080937c1e87797b1e8a4e1c23608e72bacd

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6732db8bcd366b7c1c1df3df53eafd93d5ad4562a1c31530203aabd022fc61ab
MD5 47a9218119a769632671161938b122fe
BLAKE2b-256 117bcc276ddf643bf98470f850a488ae8d01713662767a2d40e7c2ea6d2ee604

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1806027e398bd1f264e9b51a2ec81144cd2fb14c34859d6241eb963565b3bb87
MD5 b07837a26171bf3b68712d96b55ae661
BLAKE2b-256 dafbe3a94ff51379bd736ddd779c2e1a9cec361c910bbaa29775bf7689341dc5

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84a788f06458566295df96882fec23ee72dfb9ba2e2018ccd73ff162dd054044
MD5 e3ae0efd22ff84832ca1a2bc20733766
BLAKE2b-256 4bf9a629273df7d74e3cec301d1fb930418569fd2853c8ae2129810a7f31da16

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d821c63561501d14dd0f3e75126cc3d37ed8e43d12f675786684e1aea71dca92
MD5 0849a7cfe00025eff711fba0c59b78e7
BLAKE2b-256 472384e86d2649cc409e479460ad644d77a320f3046a52b3b64d5a43230e11b2

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d8d76c456fa3dbb47eb0cd3fd7b1ba01cf536b1016490a10e138405760f27d63
MD5 6a21e882fea146b173e2eb3aa3cefbc5
BLAKE2b-256 157b33cfec9595467095532872c9b7146fd0272b845281121c5deb2657b2f76b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b34caa12b1b923431784cab02de480ac7d071dd4bcb11c3da525e353291a1786
MD5 68fc92663b3bbbb29150cfa431b83c0e
BLAKE2b-256 35513b96c4445fb9f4495d7f9be8810fb61c2dbf79047d37e9894b677f4dfe45

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7231b203f8ac3f60a588ba2b9db49a3b037e7dd8818ea3114b7e93c1f9352bb7
MD5 59ad0230f82426d019ca1b13b0e16ac1
BLAKE2b-256 ddfad2b36f95c3740e3d3bcefc90fe1c50f5906d04c48a80ca21844e0002205f

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae7f6c8c245065501bf27484798680909186608216e00849d07d7d0f2a80e8b3
MD5 b666fc68cb842499acf62e43de54e3e5
BLAKE2b-256 8ef222a257a1d416c138d30030468250e3c95364dd890d1f65ff0ebed8e16f28

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9c6667098f26a2d0f217204fe06f056faa6765e870641d87a6e52fbe6e650d4
MD5 595fe603b5cc0280f088f2dd2dba81c9
BLAKE2b-256 60008c09c61572785b0d6933861ca8ef19e51854c7d56e3910430a916e786f8b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.62-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.62-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76f2d1cc91f59a89d868b996fd2cdb4f1e630819394d5ff6cf573de107beca6d
MD5 9b28172b58243740511cc3a01e6b89f6
BLAKE2b-256 b0f30ab79b1baad2297215ffd4b6bddb251df9fa7c684a2202978115e22ea318

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page