Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

ABC random forests for model choice and parameters estimation

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with Intel’s Math Kernel Library, in order to leverage multicore and SIMD extensions on modern cpus.

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, presented in MER (Molecular Ecology Resources, Special Issue), (Collin et al. 2021).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

Various

Partial Least Squares algorithm

  1. X_{0}=X ; y_{0}=y
  2. For k=1,2,...,s :
    1. w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}
    2. Normalize w_k to 1
    3. t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}
    4. p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    5. X_{k}=X_{k-1}-t_{k} p_{k}^{T}
    6. q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    7. u_{k}=\frac{y_{k-1}}{q_{k}}
    8. y_{k}=y_{k-1}-q_{k} t_{k}

Comment When there isn’t any missing data, stages 2.1 and 2.2 could be replaced by w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|} and 2.3 by t_{k}=X_{k-1}w_{k}

To get W so that T=XW we compute :

\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}

where \widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right] where \mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Linux CI build with intel/MKL optimizations
  • osX CI build
  • Windows CI build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean-Michel Marin, and Arnaud Estoup. 2021. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest.” Molecular Ecology Resources 21 (8): 2598–2613. https://doi.org/https://doi.org/10.1111/1755-0998.13413.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Lintusaari, Jarno, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. 2018. “ELFI: Engine for Likelihood-Free Inference.” Journal of Machine Learning Research 19 (16): 1–7. http://jmlr.org/papers/v19/17-374.html.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[^1]: The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[^2]: We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.64.tar.gz (56.0 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.64-cp311-cp311-win_amd64.whl (614.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyabcranger-0.0.64-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.64-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyabcranger-0.0.64-cp310-cp310-win_amd64.whl (614.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyabcranger-0.0.64-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.64-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.64-cp39-cp39-win_amd64.whl (612.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyabcranger-0.0.64-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.64-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.64-cp38-cp38-win_amd64.whl (614.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyabcranger-0.0.64-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.64-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.64-cp37-cp37m-win_amd64.whl (614.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyabcranger-0.0.64-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.64-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.64.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.64.tar.gz
  • Upload date:
  • Size: 56.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyabcranger-0.0.64.tar.gz
Algorithm Hash digest
SHA256 38738c8f4df2cb7f6a5293147e6342fb805067d4913ba2f8401f73f8a5aaaa17
MD5 ab6b69261d82e9ec3db978a360587601
BLAKE2b-256 2de3d533bb8fcdba6ba85e6879f7c15e90609a4f9b6dbb2bfc700bb983162d03

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 16941c550950d7ba9e039cb4689e29dca3786cc2d0008fa68302b61b6052fa74
MD5 cc04d41cd36b8e2448a66718e279fd1c
BLAKE2b-256 fb23ae3806cc2258e6f15bc84768478972ce7008fe2aef5a19dd8cb00377b414

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b018f35d83755b36248fccbaefc9dcb64733e65a43dd28f662b1caef61fd21d
MD5 90f6af433981b76bc3185dc2e9879c9e
BLAKE2b-256 907f72bb9a43b8da60277ab29096a12353880a8f62fbb7fa6bdeba00839452f1

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7392d096d9a1440eebaa41eb96cf1c11175b17abbfcba175041f139dc43d475
MD5 35307b3419176593e6e1506b929a2e59
BLAKE2b-256 b0aa991a4c32f176921fd56193dd8e5e875374ded6d1fb6b14a17f9fdf24d08a

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 869a7ef881c5b5bbf829cc84dfe8d895280221c364b2929c7f3b86ece4522c49
MD5 3ee0758808655ea5addd85a10213fbb3
BLAKE2b-256 fda1c43b6a32239e0a07559aef2eb82e6301e4e6918429bc9d9b29396a655e9b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd5d1f93e52e4cef4249ce08c7227c1b76d45d0f6c1add0d1db86e483fb85ce6
MD5 41c9188c5156f49b64c0700e7b3bf283
BLAKE2b-256 03e018dec118a2ce9a3a131510027256629c9856acd3785a853e105426a03e77

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b42529b2acd3abe74a0a85de0d33b3186f5027708b3abb1b9d8d8f2c6233de00
MD5 2814900c3f631feb85b054d337015698
BLAKE2b-256 5086780633525caee142eaaa7766f04afad67e8a6df2d3fe1eaeda110c76219e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ff7a896b9ed4fd616911d59e6fb621a1e6e76fdd588fe3b801ae23918b971780
MD5 da021998900b1817e9b3856af44bae13
BLAKE2b-256 4a6e297c1f459bdd4cf096043e4133ebbf2c0c404b4cb807aa55a757aae0614c

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9be46132254dc5f2997a2ed3d947e87019a832c445d5e3ec729bdf78271aee3e
MD5 84226e1e45bd537ce505ddb0c068d256
BLAKE2b-256 14c8ccecdb7ca497fe3049b111e560c0c7ba778e029633621a89cc9b7392609d

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 650c5ad33961ffab72db0321ce944c6ed77ab47cceb30decbe546ed561cd131b
MD5 59aa144b6d265fa4bcdc4377303a8d6d
BLAKE2b-256 e510ee1c2c0801afe2388b21d51359efa1f3497263fa4dffd5989dea27295e6e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 42f8e26465e0004bc2659feba6183e5a377aa3aa8f1cd4ffff89ce897e4ea9fe
MD5 e8625d55adb396d485fb0f8fd705ee04
BLAKE2b-256 b307c28c25d30978c4c68b31a40a743863a69edecfec82aa7164f9147559ef98

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6fb948af804efa5a6e48c1c03e1bd1a193221121213853eea6835a03ec771d6
MD5 153f01f37f0dc482bdada73b2bc34fa7
BLAKE2b-256 bac718dd06958c62eaad4af070f8649549b5ad4cd960926017ae50e2fa5229fe

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04258db0032b74680bef2c222b1ae20be42b4a11640fe962287ed3b5d9de6032
MD5 b707edb8df0f76f6e75436df17972e10
BLAKE2b-256 e39d379e8e8f2eb934771a60ca76b83d30f237fb371589c4d67f361eb39b3d18

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 df65517ffc4a4aa8208422552ada69ca5cb43c41f3bc321f31fc1a0d419dc8e7
MD5 617e03b1c7250243bb0d6204ed9f4441
BLAKE2b-256 8d6d4f37e8c1d5bef3f8f63b8bdd034e5f0ee46e29f03ec522a2193683d8c4a1

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0295c1c16ff7080a5c1c89612e6f02e55b81e5753d2a2a7ab6a4d9f73a5babab
MD5 8b4d4fc057e196c3bff1fe02b25769c3
BLAKE2b-256 b9a347650714867ac399503a5929be8569a1a7e84e625244e0a47998ef74216b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.64-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.64-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6de57f6963580dec2ff260fe0a1ea6ef18ae00d31e233366b55710c84b46bf1
MD5 f2889a630559eeb73030d0596dc462da
BLAKE2b-256 373f907804af5f911bef9a0fdb91c26ec674807c7c5a8ccd3a507fc726ab59f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page