Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

ABC random forests for model choice and parameters estimation

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with Intel’s Math Kernel Library, in order to leverage multicore and SIMD extensions on modern cpus.

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, presented in MER (Molecular Ecology Resources, Special Issue), (Collin et al. 2021).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

Various

Partial Least Squares algorithm

  1. X_{0}=X ; y_{0}=y
  2. For k=1,2,...,s :
    1. w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}
    2. Normalize w_k to 1
    3. t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}
    4. p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    5. X_{k}=X_{k-1}-t_{k} p_{k}^{T}
    6. q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    7. u_{k}=\frac{y_{k-1}}{q_{k}}
    8. y_{k}=y_{k-1}-q_{k} t_{k}

Comment When there isn’t any missing data, stages 2.1 and 2.2 could be replaced by w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|} and 2.3 by t_{k}=X_{k-1}w_{k}

To get W so that T=XW we compute :

\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}

where \widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right] where \mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Linux CI build with intel/MKL optimizations
  • osX CI build
  • Windows CI build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean-Michel Marin, and Arnaud Estoup. 2021. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest.” Molecular Ecology Resources 21 (8): 2598–2613. https://doi.org/https://doi.org/10.1111/1755-0998.13413.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Lintusaari, Jarno, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. 2018. “ELFI: Engine for Likelihood-Free Inference.” Journal of Machine Learning Research 19 (16): 1–7. http://jmlr.org/papers/v19/17-374.html.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[^1]: The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[^2]: We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.66.tar.gz (56.6 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.66-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.66-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyabcranger-0.0.66-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.66-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.66-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.66-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.66-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.66-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.66-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.66-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.66.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.66.tar.gz
  • Upload date:
  • Size: 56.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyabcranger-0.0.66.tar.gz
Algorithm Hash digest
SHA256 5245cdaf70f9870246884fdb64ecb52a3bba127aea9875f78680a47de9b916ad
MD5 e3f63d008142d6f345b0b859dcf1e7e6
BLAKE2b-256 7c2e8059cded1a55239e867a329b67cbcfb19d2e4aae09a9750a46d5c09cc9b3

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02c1d5159a2cec7c491a10050f37e7e1eb3676316eef1c6b13c2d0a86ffb80d2
MD5 4888c86064e2fb09e9dd790a41f52367
BLAKE2b-256 c9017e411d677ec49701cb04d3b8ac5fd587468332a08d77fc799aed81e09320

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efdde4edb2dfdd5953993e68ca9580509327aed1cfd7e3593fdcd01fef059184
MD5 3b14f03915d627e794fff80da1bc792f
BLAKE2b-256 96ee93f73fef3c5480955b8ded4a37cc5788f0edcda0c2719e0fda1201ae95b3

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e5d2f912cc1a1c60c91afe988199823c7bca8581210f8a3e053282a058856a1
MD5 983c055938dfadfebd93143575fc6533
BLAKE2b-256 aa7dfc2e957492e9a8ea6af8fbea31dc319551d60c4ba1c0f4918414fcae5160

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dda5a1b9bc24e7a8aa7b55c1f0e5832b9753476ec4f8d56db23f66286646c920
MD5 7c57b5e385a558944714677c2bc635b2
BLAKE2b-256 17a6feff19d407cff512c8a6b846e783a4196703354107e77e5423f84ca92b87

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b33736611453a37080a9d58489657157c9ffeb1b5ea3324609028200db6eaee
MD5 8334f64383c09028b3cab566f41479c4
BLAKE2b-256 468a542992b379673c5e3ca4afe7a2fdbb97f3a6f7aed9befe0cb73b65026f8f

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad911ec6fb82482552e043fc9ada20b7787345b20dc8a8cdd2b5a7f3fe805ec8
MD5 da85878ce0375ca8a633430cdd46e18c
BLAKE2b-256 a94646860c06e67513daa0d04de354d525865f8d2e2f8717032c4d1980333cfd

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3513e1518bdbe8aef391ff91cc68858bb8387f935bde0da307d29398457da54d
MD5 d41d0de5121d06d515e4d49493ba6c2f
BLAKE2b-256 6fe69053c58e14c2210b999369211e89065069d621420b530c6b42b9613d3347

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d220c730f207b098c013a0b7c1de35d3523598558b1b6f7df8d240a779b470b2
MD5 53ee5f2abc991bef5cfe3a0dbeb573b3
BLAKE2b-256 cfec45f983e4b8183117178bc3ff84f00fa43cf4df7df23a5d333a7fcb835821

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c69f1ecda0a093947eab1a0d7ca9264b74236caae1e52e0d781fa658bec6ee2a
MD5 698af3a8d88f4a088c773577c57c9ff4
BLAKE2b-256 381f09f2cfe553926ce53a8ae76ddccacf937fc4d1ad3b24b15c5d29550265fe

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.66-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.66-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 725bae6525d3e68a29ab8b22d187b3a5b09d988480dda517b5c7df7ce1a698b3
MD5 b7280dcf00c7b4c6e864bd5c6e622592
BLAKE2b-256 74aa3b96f4708a11184e1165a90d078abe29156abff8cdb50f7393230c7bbb85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page