Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

ABC random forests for model choice and parameters estimation

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with Intel’s Math Kernel Library, in order to leverage multicore and SIMD extensions on modern cpus.

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, presented in MER (Molecular Ecology Resources, Special Issue), (Collin et al. 2021).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

Various

Partial Least Squares algorithm

  1. X_{0}=X ; y_{0}=y
  2. For k=1,2,...,s :
    1. w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}
    2. Normalize w_k to 1
    3. t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}
    4. p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    5. X_{k}=X_{k-1}-t_{k} p_{k}^{T}
    6. q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    7. u_{k}=\frac{y_{k-1}}{q_{k}}
    8. y_{k}=y_{k-1}-q_{k} t_{k}

Comment When there isn’t any missing data, stages 2.1 and 2.2 could be replaced by w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|} and 2.3 by t_{k}=X_{k-1}w_{k}

To get W so that T=XW we compute :

\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}

where \widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right] where \mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Linux CI build with intel/MKL optimizations
  • osX CI build
  • Windows CI build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean-Michel Marin, and Arnaud Estoup. 2021. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest.” Molecular Ecology Resources 21 (8): 2598–2613. https://doi.org/https://doi.org/10.1111/1755-0998.13413.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Lintusaari, Jarno, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. 2018. “ELFI: Engine for Likelihood-Free Inference.” Journal of Machine Learning Research 19 (16): 1–7. http://jmlr.org/papers/v19/17-374.html.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[^1]: The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[^2]: We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.67.tar.gz (56.6 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.67-cp311-cp311-win_amd64.whl (616.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyabcranger-0.0.67-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.67-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyabcranger-0.0.67-cp310-cp310-win_amd64.whl (616.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyabcranger-0.0.67-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.67-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.67-cp39-cp39-win_amd64.whl (614.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyabcranger-0.0.67-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.67-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.67-cp38-cp38-win_amd64.whl (616.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyabcranger-0.0.67-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.67-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.67-cp37-cp37m-win_amd64.whl (616.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyabcranger-0.0.67-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.67-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.67.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.67.tar.gz
  • Upload date:
  • Size: 56.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyabcranger-0.0.67.tar.gz
Algorithm Hash digest
SHA256 0b6e8b4ae4ae41801402c69a80d7315989fb439cc51e7255177b5b5a4d9c852c
MD5 6e2e2471e31b23b673c02ab28b2e4d0b
BLAKE2b-256 13d50a3278feacda801ae91ce677c81d7326bf2c7d78db7036c6daabe672f01e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c9344b9d383fd65eb6a32db71119ce337201737f2208fc84324b1d1baf2a0701
MD5 4030e1c86cb85ee85a7926c1fdb01227
BLAKE2b-256 39ec18ea0c11cd3bc14a7f290dd7c3526546c5723f71c006b7a6d330e8a87a78

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa8a906dcb17606cded07b57da449437633de03077749984070e5cce26293ea8
MD5 d550b222b726069c7defbb7b22dccc0d
BLAKE2b-256 0f50ab49e4ba41490868a42371782d686c306fe3c242c41172f8a213bc3ea725

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4026fa7ab92306e54b277321e720e5d47073717704e3784740964b8c7f3cdba5
MD5 61d7a52aba4e30c5632ef2d2e6362c30
BLAKE2b-256 7d22ba4bfabc65f10bb01e12e31af2a44f8ea381d2b009f5086d6646dd28741c

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 902e61eabfe61a32acca807fbbac4c56ad522361cd3b0ad1d0a4a272b1c39278
MD5 489957d7d66568afe5ddfd1cc1f69672
BLAKE2b-256 b6665e638f087c260d90d939dab56be3aee78b98f37ca3475fa939ceadb8b5da

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f8936365ec0614357dba6a1eb713edcc0dac7fdc60ad85b0f1e97e5811ca09b
MD5 0050416467b8aa3a739d99e50414bd3b
BLAKE2b-256 e9818b0af75f6d93c2b0dd27edd457896c78edc89bcc6990ca2b83e0ce7185b1

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9803c986228a852d228fb015002a23e247311e5014ac9ea5cbed7474de8e69e6
MD5 77afbe8761871d27536afb120d2088ed
BLAKE2b-256 5183f0a62461e26eda7f7e49ade4031d029169c89b5ae5aa3d08287de55da7e6

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 31804564a4d6a21872225c088ade5e6bb5a9a07a75208b793951b0a59cd572c2
MD5 d23e4b0ab7889a55fb7151c8c5d6431a
BLAKE2b-256 f20972de2b64270da411426fd1cca44d8fd35525c94dd657d3fa9a50e2d1a572

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fac226e0cf089189d0625acf57272e6e8b261fb163bcd48f0f000009d69b2b4
MD5 8b636a3951e85c94bfc1d7169cf3efe1
BLAKE2b-256 a29ad7035c835a4a5da74298bffe59bcdb755d981154ce1c4114ef9e6dd18591

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 042383bafbb38fe94a8e7ccb8c3893f991ea378909dbdc31f01879f18500dc13
MD5 74a3f94969b99f14fad53222e019421b
BLAKE2b-256 e252cad2689017a399625f70c308ee8ae86a52ea74cab02d22fb3c2c6d5a0a4b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 73efd1da92a4eff70180df382246494f9d8ef7b2c76d9cee80a700f3ebed7a07
MD5 45dbe04a1d1c9e5be0574027d5c468aa
BLAKE2b-256 25cc644b21b5ea9fa0fc8abe2038e1df383ea4925d5e1476612b39235a610271

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7755afe778c5475a21a448692f16c42a6663e791f15ccb9d0cbfe3e413a58b59
MD5 998e1e05ee56d64ed601b1e2c3c894dc
BLAKE2b-256 7a41482b9d4c87ffc2f3d4b5d33aa9c2f78e6e0041ea6f7ef6b52d7f53e567a0

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6eb249970977277883f7fa076cd3630af9b7011a0b37ef1dd451c55219123031
MD5 d9e1e36081ae2fa572e3127afb63ad93
BLAKE2b-256 7e7a42e57d561c8aab2c8b1b28875b843f5c8b36130eeaa0fab02c7390fd3280

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 23c525e65dcdb46fc0e2183b3217398120eaf4150847c53f48d2d0e4d76bcd18
MD5 7c1aa296f4b8fa8fb0af0ecbdb0b6593
BLAKE2b-256 2c9ba265d353219178aefb20b6f1d737d87c76cd036786c25636bfc7bff9c6a8

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68620820734e73280dae509095081d85aa763f4cc4ab06e0ed373634acb23127
MD5 ce4802918ed4900d355402166de840ae
BLAKE2b-256 2d8b61fab52981b3df1e2f3dcfc18ece95875f69588287ef6257d67c44b9b71e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.67-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.67-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4b6b5172aab4133f85d2cab984111b3a6f4d7f8a61a72d18708631f51062c8b
MD5 da3a3f384778494cd87f8698cbce94a4
BLAKE2b-256 919a9a6227bc6d5f3e749deb8cdf9f751a905a5c3cdedd3ebfd42aad6996a4f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page