Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

ABC random forests for model choice and parameters estimation

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, 1:81, 114), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with Intel’s Math Kernel Library, in order to leverage multicore and SIMD extensions on modern cpus.

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, presented in MER (Molecular Ecology Resources, Special Issue), (Collin et al. 2021).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the m first axes is defined by the R-squared of the output:

Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}

where \hat{y}^{m} is the output Y scored by the pls for the mth component. So, only the n_{comp} first axis are kept, and :

n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this n_{heur} close enough to the previous n_{comp} for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

Various

Partial Least Squares algorithm

  1. X_{0}=X ; y_{0}=y
  2. For k=1,2,...,s :
    1. w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}
    2. Normalize w_k to 1
    3. t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}
    4. p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    5. X_{k}=X_{k-1}-t_{k} p_{k}^{T}
    6. q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}
    7. u_{k}=\frac{y_{k-1}}{q_{k}}
    8. y_{k}=y_{k-1}-q_{k} t_{k}

Comment When there isn’t any missing data, stages 2.1 and 2.2 could be replaced by w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|} and 2.3 by t_{k}=X_{k-1}w_{k}

To get W so that T=XW we compute :

\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}

where \widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right] where \mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Linux CI build with intel/MKL optimizations
  • osX CI build
  • Windows CI build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean-Michel Marin, and Arnaud Estoup. 2021. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest.” Molecular Ecology Resources 21 (8): 2598–2613. https://doi.org/https://doi.org/10.1111/1755-0998.13413.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Lintusaari, Jarno, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. 2018. “ELFI: Engine for Likelihood-Free Inference.” Journal of Machine Learning Research 19 (16): 1–7. http://jmlr.org/papers/v19/17-374.html.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[^1]: The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[^2]: We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.70.tar.gz (58.1 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.70-cp311-cp311-win_amd64.whl (634.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyabcranger-0.0.70-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.70-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyabcranger-0.0.70-cp310-cp310-win_amd64.whl (634.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyabcranger-0.0.70-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.70-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.70-cp39-cp39-win_amd64.whl (632.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyabcranger-0.0.70-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.70-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.70-cp38-cp38-win_amd64.whl (634.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyabcranger-0.0.70-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.70-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyabcranger-0.0.70-cp37-cp37m-win_amd64.whl (635.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyabcranger-0.0.70-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.70-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.70.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.70.tar.gz
  • Upload date:
  • Size: 58.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyabcranger-0.0.70.tar.gz
Algorithm Hash digest
SHA256 1aefb0cdb9b8c49cd209760771ee5f7d3457622affdff010c0a0872cbff27470
MD5 071a021644266948fdc08683be6c5708
BLAKE2b-256 145d34a0141cc174f0518ca9d51fc35305a38521014e07f69df9741dcc1abf2b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f1363af2bda43513e8861ae3c729950be8ec732cd82e8482547a6e9702635a9c
MD5 aae48f8a360aed1b740201b118ff72cb
BLAKE2b-256 e666fbf02518b679d048ce9ad8e5af6ad26334d726e0e72065624b30bf834809

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92aeef6c7192f343460590636588efa5b1b34336aae68f11798c10c6347f5626
MD5 16f72692f4f55d0a382459beb43c0d65
BLAKE2b-256 e08316fa5cb53cde387986c78e72f646bb65e04d0dfde1856b88602f3fffb3b4

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47e0515dd33341069a8ba0615ced734f85190fdf7ed24ce2bb4839454785232c
MD5 8f0e742068b3ad0ee884a8904a707c07
BLAKE2b-256 d84d789d07df30195473f858f37eaafc7f1dcdcaf5831a8fe5353c30d73d3b58

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 28f255798de1730ba595dc993bc87bf248943890e7c80329b89ef62b597270f6
MD5 06bd53f8ca9747ad8f5a9b5b38664a8d
BLAKE2b-256 8f8285ae8f6e01cf6bef7882f9d49e24345e1d7eb4c89c1de752938d089ca53b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba5b83286908f6beea2d5380344d1568012946716d3a6a3a6b7bd3405d026f62
MD5 e55f86f34abdc6e2a841bdcfe1453149
BLAKE2b-256 4b802ba43f4f0768fe583701e3d57c26e7db3310bcb855d259dd6cc1d85b6468

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a59c1f39b0564c6231d690c12a45732b408d250dbe05a3fade0a4bfcffbb654
MD5 78200844493d45138b55a59931d7f032
BLAKE2b-256 ec6dfb26d60d07439327386e79b9efcfc290a7554483a5c3c0e86d1277f83d0e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6ffa83db6279a89d3f6d3ad27d833913780b962a1e12758c40c5f64e5799d7e
MD5 0a016e43b99848219a5d9f8df1a53e5b
BLAKE2b-256 db75c5423c705ade2c512b569618db7dd1a1159a9bab0859916337820d93c915

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c5540b3c7fa6363d3e50b53bc3038db46e63298fd8e918a6f0b3a2471d08f53
MD5 5b69c8834dccd33a06d7cf23ff3601f9
BLAKE2b-256 aa2e357f9656681c6b33dae213299a80f07b069d03d8584fee802f9f7dae802e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c500395539252acbbab624a231c25e2c4f77b25a5829dd939485db7b540c2c8b
MD5 122b3f79588a4cf145b31e055d46fda4
BLAKE2b-256 d04a2a5266e0896a2ee24c77439ce92414fa6dfa5432453b2b65069e1fc22195

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 234515e3b8dd52258bdbda31c2cdabeef2bd50ed96ffd50a8fd7bd283b695eff
MD5 5a052a33a794cc6fcff071e9be544200
BLAKE2b-256 92e6baa3f2846ed2091ec78f3c43d863c7c71afb78d7151d7b56268280bfdc50

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f3ea2622d1f341c3043ad854739d55777248025540dd8808a6c30a1f57a813e
MD5 258639b50e275cfb635980f1a11c104d
BLAKE2b-256 12086fb6b9b1424488dfac84b8bb78d8c03aa0204453c1137b3e280666d34a6f

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca2e1205ad530998b7dc8ff43ca1ad72958836c70e4ad05d48b3ceb3bb81bd5a
MD5 e31552a963df794beea1dde97feedef6
BLAKE2b-256 ee5dd3403ca1f728fe23cd86ede2fad187609eb872dc7a9bd94be9c972f7542e

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f536df8d3af48450200518a379d9d56b8db46bc802e29ecd2064deffa3bcdeea
MD5 3362b6184d0e2c507d9eeda1309f6131
BLAKE2b-256 30ba1dfb58bdf7c0e1691e0a8725fcae9aa2af03c5eacad6dd16cba0c4635782

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a6fc4a803175137c4906b6ffa3db10b9c473a26fa2326aa53ecd8c27d13005b
MD5 66c753e9aff2efed3e771671ca3a1f61
BLAKE2b-256 a13f848087218389eed2a5b86b88efef2e7aeed8f63864c7a5bf7ef105f6cabf

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.70-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.70-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7626074ae2524a403790b45c7df29d30e5a4b0e8d4f1e3fc6d86dcbfedb5e87e
MD5 5ecf62457e23fb5cd0878419e28a272e
BLAKE2b-256 c4eb244c527f3c0c21a7d082988f2aca43b767474d63f6624481ba399a0e96fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page