Skip to main content

ABC random forests for model choice and parameter estimation, python wrapper

Project description

ABC random forests for model choice and parameters estimation

PyPI abcranger-build

Random forests methodologies for :

Libraries we use :

As a mention, we use our own implementation of LDA and PLS from (Friedman, Hastie, and Tibshirani 2001, vol. 181, 114), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with Intel’s Math Kernel Library, in order to leverage multicore and SIMD extensions on modern cpus.

There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “Releases” tab, under “Assets” section (unfold it to see the list).

This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters.

The standalone is part of a specialized Population Genetics graphical interface DIYABC-RF, presented in MER (Molecular Ecology Resources, Special Issue), (Collin et al. 2021).

Python

Installation

pip install pyabcranger

Notebooks examples

Usage

 - ABC Random Forest - Model choice or parameter estimation command line options
Usage:
  ../build/abcranger [OPTION...]

  -h, --header arg        Header file (default: headerRF.txt)
  -r, --reftable arg      Reftable file (default: reftableRF.bin)
  -b, --statobs arg       Statobs file (default: statobsRF.txt)
  -o, --output arg        Prefix output (modelchoice_out or estimparam_out by
                          default)
  -n, --nref arg          Number of samples, 0 means all (default: 0)
  -m, --minnodesize arg   Minimal node size. 0 means 1 for classification or
                          5 for regression (default: 0)
  -t, --ntree arg         Number of trees (default: 500)
  -j, --threads arg       Number of threads, 0 means all (default: 0)
  -s, --seed arg          Seed, generated by default (default: 0)
  -c, --noisecolumns arg  Number of noise columns (default: 5)
      --nolinear          Disable LDA for model choice or PLS for parameter
                          estimation
      --plsmaxvar arg     Percentage of maximum explained Y-variance for
                          retaining pls axis (default: 0.9)
      --chosenscen arg    Chosen scenario (mandatory for parameter
                          estimation)
      --noob arg          number of oob testing samples (mandatory for
                          parameter estimation)
      --parameter arg     name of the parameter of interest (mandatory for
                          parameter estimation)
  -g, --groups arg        Groups of models
      --help              Print help
  • If you provide --chosenscen, --parameter and --noob, parameter estimation mode is selected.
  • Otherwise by default it’s model choice mode.
  • Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case.

Model Choice

Terminal model choice
Terminal model choice

Example

Example :

abcranger -t 10000 -j 8

Header, reftable and statobs files should be in the current directory.

Groups

With the option -g (or --groups), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 `-g “1,2,3;4,5,6”

Generated files

Four files are created :

  • modelchoice_out.ooberror : OOB Error rate vs number of trees (line number is the number of trees)
  • modelchoice_out.importance : variables importance (sorted)
  • modelchoice_out.predictions : votes, prediction and posterior error rate
  • modelchoice_out.confusion : OOB Confusion matrix of the classifier

Parameter Estimation

Terminal estim param
Terminal estim param

Composite parameters

When specifying the parameter (option --parameter), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like t/N or T1+T2.

A note about PLS heuristic

The --plsmaxvar option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the $m$ first axes is defined by the R-squared of the output:

$$Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}{i}-\bar{y})^2}}{\sum{i=1}^{N}{(y_{i}-\hat{y})^2}}$$

where $\hat{y}^{m}$ is the output $Y$ scored by the pls for the $m$th component. So, only the $n_{comp}$ first axis are kept, and :

$$n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\mathop{\text{argmax}}}$$

Note that if you specify 0 as --plsmaxvar, an “elbow” heuristic is activiated where the following condition is tested for every computed axis :

$$\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)$$

If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation.

In practice, we find this $n_{heur}$ close enough to the previous $n_{comp}$ for 99%, but it isn’t guaranteed.

The signification of the noob parameter

The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (--noob) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning --noob the same than for --nref) for weights predictions (Raynal et al. 2018) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size noob.

Example (parameter estimation)

Example (working with the dataset in test/data) :

abcranger -t 1000 -j 8 --parameter ra --chosenscen 1 --noob 50

Header, reftable and statobs files should be in the current directory.

Generated files (parameter estimation)

Five files (or seven if pls activated) are created :

  • estimparam_out.ooberror : OOB MSE rate vs number of trees (line number is the number of trees)
  • estimparam_out.importance : variables importance (sorted)
  • estimparam_out.predictions : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction
  • estimparam_out.predweights : csv of the value/weights pairs of the prediction (for density plot)
  • estimparam_out.oobstats : various statistics on oob (MSE, NMSE, NMAE etc.)

if pls enabled :

  • estimparam_out.plsvar : variance explained by number of components
  • estimparam_out.plsweights : variable weight in the first component (sorted by absolute value)

Various

Partial Least Squares algorithm (univariate)

  1. $X_{0}=X ; y_{0}=y$
  2. For $k=1,2,...,s$ :
    1. $w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}$
    2. Normalize $w_k$ to $1$
    3. $t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}$
    4. $p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}$
    5. $X_{k}=X_{k-1}-t_{k} p_{k}^{T}$
    6. $q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}$
    7. $u_{k}=\frac{y_{k-1}}{q_{k}}$
    8. $y_{k}=y_{k-1}-q_{k} t_{k}$

Comment When there isn’t any missing data, stages $2.1$ and $2.2$ could be replaced by $w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left|X_{k-1}^{T} y_{k-1}\right|}$ and $2.3$ by $t_{k}=X_{k-1}w_{k}$

To get $W$ so that $T=XW$ we compute : $$\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}$$

where $\widetilde{\mathbf{P}}{K \times p}=\mathbf{t}\left[p{1}, \ldots, p_{K}\right]$ and $\mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]$

TODO

Input/Output

  • Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata
  • Provide R code to save/load the data
  • Provide Python code to save/load the data

C++ standalone

  • Merge the two methodologies in a single executable with the (almost) the same options
  • (Optional) Possibly move to another options parser (CLI?)

External interfaces

  • R package
  • Python package

Documentation

  • Code documentation
  • Document the build

Continuous integration

  • Linux CI build with intel/MKL optimizations
  • osX CI build
  • Windows CI build

Long/Mid term TODO

  • methodologies parameters auto-tuning
    • auto-discovering the optimal number of trees by monitoring OOB error
    • auto-limiting number of threads by available memory
  • Streamline the two methodologies (model choice and then parameters estimation)
  • Write our own tree/rf implementation with better storage efficiency than ranger
  • Make functional tests for the two methodologies
  • Possible to use mondrian forests for online batches ? See (Lakshminarayanan, Roy, and Teh 2014)

References

This have been the subject of a proceedings in JOBIM 2020, PDF and video (in french), (Collin et al. 2020).

Collin, François-David, Ghislain Durif, Louis Raynal, Eric Lombaert, Mathieu Gautier, Renaud Vitalis, Jean-Michel Marin, and Arnaud Estoup. 2021. “Extending Approximate Bayesian Computation with Supervised Machine Learning to Infer Demographic History from Genetic Polymorphisms Using DIYABC Random Forest.” Molecular Ecology Resources 21 (8): 2598–2613. https://doi.org/https://doi.org/10.1111/1755-0998.13413.

Collin, François-David, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal. 2020. “Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC.” In JOBIM 2020, 2020:66. JOBIM. Montpellier, France. https://hal.archives-ouvertes.fr/hal-02910067.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh. 2014. “Mondrian Forests: Efficient Online Random Forests.” In Advances in Neural Information Processing Systems, 3140–48.

Lintusaari, Jarno, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, and Samuel Kaski. 2018. “ELFI: Engine for Likelihood-Free Inference.” Journal of Machine Learning Research 19 (16): 1–7. http://jmlr.org/papers/v19/17-374.html.

Pudlo, Pierre, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. 2015. “Reliable ABC Model Choice via Random Forests.” Bioinformatics 32 (6): 859–66.

Raynal, Louis, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. 2018. “ABC random forests for Bayesian parameter inference.” Bioinformatics 35 (10): 1720–28. https://doi.org/10.1093/bioinformatics/bty867.

Wright, Marvin N, and Andreas Ziegler. 2015. “Ranger: A Fast Implementation of Random Forests for High Dimensional Data in c++ and r.” arXiv Preprint arXiv:1508.04409.

[^1]: The term “online” there and in the code has not the usual meaning it has, as coined in “online machine learning”. We still need the entire training data set at once. Our implementation is an “online” one not by the sequential order of the input data, but by the sequential order of computation of the trees in random forests, sequentially computed and then discarded.

[^2]: We only use the C++ Core of ranger, which is under MIT License, same as ours.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabcranger-0.0.72.tar.gz (57.3 kB view details)

Uploaded Source

Built Distributions

pyabcranger-0.0.72-cp312-cp312-win_amd64.whl (634.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyabcranger-0.0.72-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.72-cp312-cp312-macosx_11_0_arm64.whl (462.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyabcranger-0.0.72-cp312-cp312-macosx_10_9_x86_64.whl (526.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyabcranger-0.0.72-cp311-cp311-win_amd64.whl (633.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyabcranger-0.0.72-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.72-cp311-cp311-macosx_11_0_arm64.whl (461.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyabcranger-0.0.72-cp311-cp311-macosx_10_9_x86_64.whl (525.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyabcranger-0.0.72-cp310-cp310-win_amd64.whl (632.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyabcranger-0.0.72-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.72-cp310-cp310-macosx_11_0_arm64.whl (460.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyabcranger-0.0.72-cp310-cp310-macosx_10_9_x86_64.whl (523.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyabcranger-0.0.72-cp39-cp39-win_amd64.whl (629.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyabcranger-0.0.72-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.72-cp39-cp39-macosx_11_0_arm64.whl (460.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyabcranger-0.0.72-cp39-cp39-macosx_10_9_x86_64.whl (524.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyabcranger-0.0.72-cp38-cp38-win_amd64.whl (632.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyabcranger-0.0.72-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyabcranger-0.0.72-cp38-cp38-macosx_11_0_arm64.whl (461.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyabcranger-0.0.72-cp38-cp38-macosx_10_9_x86_64.whl (523.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyabcranger-0.0.72.tar.gz.

File metadata

  • Download URL: pyabcranger-0.0.72.tar.gz
  • Upload date:
  • Size: 57.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyabcranger-0.0.72.tar.gz
Algorithm Hash digest
SHA256 ec6ed6069a81c1b04c0da8b7b05173b7914cb3d9c917a4223a230e7900743602
MD5 ee31879b0708da0976d9434f68da3c4e
BLAKE2b-256 1e6aabec20046c84055d023420886a96caf8bec1b07efbf473a44245537a0b06

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 002d548315e2e936640d89789c494eb72c36233430985dca032665b0cc8db7b4
MD5 d47b1a2c8050a0f3da7009937fad4d2c
BLAKE2b-256 e4661e303260df7aa3387ed60ea82a716791828842f1e704896ae73aac1540f6

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0697294e83ee77e3094e5d6a5b73203b5156dd71cf7826a27fa439405fc5aece
MD5 8966d26a43d4626cbad901d31ec14674
BLAKE2b-256 0ecfeed934bbf1880d99c4ffc7e729fa915e2e1f32ef460a0d5d35585105b693

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9635724163623896b4597c1b17a5905eebb13484d8aade31d66f05e93579868f
MD5 f323021e3340c3ecc6c091fd10f3e82a
BLAKE2b-256 5c1c59dfab283c72d3cdf72c1600f90e005097662576a521fde53da9e4508ca4

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51cc1b3161ba5b69de711706ce046dff910905ee949962c66a83a7bc911f513d
MD5 b104212dc469bb9bba79ed9c89793fa5
BLAKE2b-256 ca2a5a7bab46b5752091b3af72a15c6ed8648163fe26c222647d63c1102cd2bb

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4d3e9084550ebea54606825e0502dc49b2e79fd06807d541eb4745bb77e6d364
MD5 5b3bd7b8f439443f27fbf71ce608e217
BLAKE2b-256 fc343a56c3e0813e81ab576a77b39f0d5256fe8b99817d850425e0861af43778

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c80784fa1ccb79c15d41909dd8e48d19188556a6d3cdd0b2b98a2083a4b1b91
MD5 e1ad59c8597f7701dbbf469e95e0543d
BLAKE2b-256 e2645c04ba2ab70aa1b099e5a7b57410d31429858f423d9d5ba6108b641e4228

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 413a1294771d81eab89ea5d5eaed162b8710ab37cc947a184c256b03055812d9
MD5 2bcbf059a816feb619643074bce35ffe
BLAKE2b-256 7bf05052c8e2652d5bc3504a197a3573b1604e02d14e7a3284f525f75f0ca716

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c49c748a0d5aebf4f2e75b46ff21a512e1ab6b650ca2f2502540065c9bc60bb0
MD5 f08c2b6a0713199fa38b872d192774f6
BLAKE2b-256 c07f80bf35915c78a839f8e6db8c0e8087724b2e188e33b45e62e90cfc17ce9c

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1842506f0dfc0b04b3444615bdf77e1da01addcd1dda3b77da72e5531c97b9b0
MD5 c9594c80bba8ed4b3cb29ec7c6f8caea
BLAKE2b-256 0ac9cd9bb498d5d52394d97289d0d0fdba33a2c33507500801ec264bee4a4153

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae24b5e9aa2d9e19b312656daed1db3c25785ea50e3645a4b244cd25730b3fe6
MD5 fc23bd15d448236b497ab771ea97f7f1
BLAKE2b-256 d6f5296482e2005e5a9b6de926094c53cf567c41508baa0eabed1c3ebe3a5c4b

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f45201d1adda37339f3b04bf01d29fcc2d150eebab49f8432cd869b0cd442fe3
MD5 201e075fdd3c3a5406d99f2790e35b5c
BLAKE2b-256 6c4aee8f78377b7d3083084a91061165b7f4033814834fdbe3afc3a53c13ebfc

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d6bbc197638d5773d55b72b69402712e62705e5da6643d5a7d2d8e537f306dd
MD5 2e27bb017bd255663f3109bec34aa4ad
BLAKE2b-256 cbeea21a102aa67561ad339a5365c55c3f8316a52c8936c4c36d89de353f9eb4

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 58325bd593ca8cf87460442793243576564838097b7c70f50ecdfb422a0c1850
MD5 f49a418f4b8dd3bc03adc6d5387e96f7
BLAKE2b-256 1c67913d1f3be55f93e9c86681781a645ac029157a925536f964f58d7564d253

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80d428c5bc31f63db3ad56a8f01f0481458636f6484a328251eac8e39b160011
MD5 1b028292897f6fe5d23d14b9d56dc987
BLAKE2b-256 1c8ee0b9034d91b52977821ab44e2aa32bae5703305751509146e5bdb1f704f6

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56f9047267095ffad343d6fe98aa9384534c4600fc57e563bf68dc5845385bfe
MD5 76b2b288e8449bd54e215573f041c139
BLAKE2b-256 1622493ebc8c8160b85d937ceea52c2d4e92a1ae88286a4e596a4fc4765c0180

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5170972c15261003903b2768899de2ff533bf19d44b5402bcdb2394b14c5bfec
MD5 92fc83f06c6fffb5cc648c2831d84e90
BLAKE2b-256 cf16315917239347d6004493460ce3585d4d53e91620b84d9797875c21a29b56

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 63ce2bd060f1cb093ad33ff036e41304651ce7065243a5fe8789f9597b668ccc
MD5 f9c73ce1fd02253b8e82634e88881dfc
BLAKE2b-256 d67aa5a96e4602b6ccf4148012bb4f5e4ce7ac3d38468eff64e8b65cef6cebbb

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d87720b9205cdad33f8e01e7dd26e4a56aa827810127240800a5cb88900b4ad
MD5 e5f2e0db43b78fd71d5384381064254e
BLAKE2b-256 28b4ff709116579df2298890b59b5431d7017f9ea08ed2e12f9494a26ade0ec4

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c96815fa290133463641c16f8e9cd4bf85ba2de45869b3689f5ea7fe60d8973
MD5 b41bb508b9327d0a2b3fa42db31d79f4
BLAKE2b-256 d070a9c5d9f743a4646440dad69a350519aceb5c52ae01bb360ab3cd4268f8d4

See more details on using hashes here.

File details

Details for the file pyabcranger-0.0.72-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyabcranger-0.0.72-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9ed7a98044d0be0057e95897cd84da9dfe4b17e4acb9309a9e08d3976547648
MD5 fab5ee05db44a818b2d43473cd8ccfaa
BLAKE2b-256 a2c708bd42920c823cc8dc8e042dbaf8971d23615fd0f84a6724fb9ba9b39e6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page