Skip to main content

pyabpoa: SIMD-based partial order alignment using adaptive band

Project description

pyabpoa: abPOA Python interface

Introduction

pyabpoa provides an easy-to-use interface to abPOA, it contains all the APIs that can be used to perform MSA for a set of sequences and consensus calling from the final alignment graph.

Installation

Install pyabpoa with pip

pyabpoa can be installed with pip:

pip install pyabpoa

Install pyabpoa from source

Alternatively, you can install pyabpoa from source (cython is required):

git clone --recursive https://github.com/yangao07/abPOA.git
cd abPOA
make install_py

Examples

The following code illustrates how to use pyabpoa.

import pyabpoa as pa
a = pa.msa_aligner()
seqs=[
'CCGAAGA',
'CCGAACTCGA',
'CCCGGAAGA',
'CCGAAGA'
]
res=a.msa(seqs, out_cons=True, out_msa=True) # perform multiple sequence alignment 

for seq in res.cons_seq:
    print(seq)  # print consensus sequence

res.print_msa() # print row-column multiple sequence alignment in PIR format

You can also try the example script provided in the source folder:

python ./python/example.py

APIs

Class pyabpoa.msa_aligner

pyabpoa.msa_aligner(aln_mode='g', ...)

This constructs a multiple sequence alignment handler of pyabpoa, it accepts the following arguments:

  • aln_mode: alignment mode. 'g': global, 'l': local, 'e': extension; default: 'g'
  • is_aa: input is amino acid sequence; default: False
  • match: match score; default: 2
  • mismatch: match penaty; default: 4
  • score_matrix: scoring matrix file, match and mismatch are not used when score_matrix is used; default: ''
  • gap_open1: first gap opening penalty; default: 4
  • gap_ext1: first gap extension penalty; default: 2
  • gap_open2: second gap opening penalty; default: 24
  • gap_ext2: second gap extension penalty; default: 1
  • extra_b: first adaptive banding paremeter; set as < 0 to disable adaptive banded DP; default: 10
  • extra_f: second adaptive banding paremete; the number of extra bases added on both sites of the band is b+f*L, where L is the length of the aligned sequence; default : 0.01
  • cons_algrm: consensus calling algorithm. 'HB': heaviest bunlding, 'MF': most frequent bases; default: 'HB'

The msa_aligner handler provides one method which performs multiple sequence alignment and takes four arguments:

pyabpoa.msa_aligner.msa(seqs, out_cons, out_msa, out_pog='', incr_fn='')
  • seqs: a list variable containing a set of input sequences; positional
  • out_cons: a bool variable to ask pyabpoa to generate consensus sequence; positional
  • out_msa: a bool variable to ask pyabpoa to generate RC-MSA; positional
  • max_n_cons: maximum number of consensus sequence to generate; default: 1
  • min_freq: minimum frequency of each consensus to output (effective when max_n_cons > 1); default: 0.3
  • out_pog: name of a file (.png or .pdf) to store the plot of the final alignment graph; default: ''
  • incr_fn: name of an existing graph (GFA) or MSA (FASTA) file, incrementally align sequence to this graph/MSA; default: ''

Class pyabpoa.msa_result

pyabpoa.msa_result(seq_n, cons_n, cons_len, ...)

This class describes the information of the generated consensus sequence and the RC-MSA. The returned result of pyabpoa.msa_aligner.msa() is an object of this class that has the following properties:

  • n_seq: number of input aligned sequences
  • n_cons: number of generated consensus sequences (generally 1, could be 2 or more if max_n_cons is set as > 1)
  • clu_n_seq: an array of sequence cluster size
  • cons_len: an array of consensus sequence length(s)
  • cons_seq: an array of consensus sequence(s)
  • cons_cov: an array of consensus sequence coverage for each base
  • msa_len: size of each row in the RC-MSA
  • msa_seq: an array containing n_seq+n_cons strings that demonstrates the RC-MSA, each consisting of one input sequence and several - indicating the alignment gaps.

pyabpoa.msa_result() has a function of print_msa which prints the RC-MSA to screen.

pyabpoa.msa_result().print_msa()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyabpoa-1.5.3.tar.gz (690.1 kB view details)

Uploaded Source

File details

Details for the file pyabpoa-1.5.3.tar.gz.

File metadata

  • Download URL: pyabpoa-1.5.3.tar.gz
  • Upload date:
  • Size: 690.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for pyabpoa-1.5.3.tar.gz
Algorithm Hash digest
SHA256 94714bb5c6be9f5ca35b66a5c63490237ebff2498ff93b82a842a9512b0bbc08
MD5 dc42f963d0029461b4225fbdc88b9ba9
BLAKE2b-256 6eb82ec2e44c82b8011e4179b1da91748d232789a3f8a8b7b8bec1d61c39cac3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page