Skip to main content

Uniformly remeshes surface meshes

Project description

https://img.shields.io/pypi/v/pyacvd.svg

This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.

Installation

Installation is straightforward using pip:

$ pip install pyacvd

Example

This example remeshes a non-uniform quad mesh into a uniform triangular mesh.

from pyvista import examples
import pyacvd

# download cow mesh
cow = examples.download_cow()

# plot original mesh
cow.plot(show_edges=True, color='w')
original cow mesh zoomed cow mesh
clus = pyacvd.Clustering(cow)
# mesh is not dense enough for uniform remeshing
clus.subdivide(3)
clus.cluster(20000)

# plot clustered cow mesh
clus.plot()
zoomed cow mesh
# remesh
remesh = clus.create_mesh()

# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
zoomed cow mesh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyacvd-0.3.3-cp313-cp313-win_amd64.whl (69.4 kB view details)

Uploaded CPython 3.13Windows x86-64

pyacvd-0.3.3-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (76.3 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyacvd-0.3.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (96.2 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pyacvd-0.3.3-cp313-cp313-macosx_11_0_arm64.whl (66.9 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pyacvd-0.3.3-cp313-cp313-macosx_10_14_x86_64.whl (74.5 kB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

pyacvd-0.3.3-cp312-cp312-win_amd64.whl (69.4 kB view details)

Uploaded CPython 3.12Windows x86-64

pyacvd-0.3.3-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (76.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyacvd-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (96.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyacvd-0.3.3-cp312-cp312-macosx_11_0_arm64.whl (66.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pyacvd-0.3.3-cp312-cp312-macosx_10_14_x86_64.whl (74.5 kB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

pyacvd-0.3.3-cp311-cp311-win_amd64.whl (70.9 kB view details)

Uploaded CPython 3.11Windows x86-64

pyacvd-0.3.3-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (79.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyacvd-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (99.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyacvd-0.3.3-cp311-cp311-macosx_11_0_arm64.whl (68.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pyacvd-0.3.3-cp311-cp311-macosx_10_14_x86_64.whl (76.2 kB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

pyacvd-0.3.3-cp310-cp310-win_amd64.whl (71.0 kB view details)

Uploaded CPython 3.10Windows x86-64

pyacvd-0.3.3-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (79.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyacvd-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (99.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyacvd-0.3.3-cp310-cp310-macosx_11_0_arm64.whl (69.0 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pyacvd-0.3.3-cp310-cp310-macosx_10_14_x86_64.whl (76.4 kB view details)

Uploaded CPython 3.10macOS 10.14+ x86-64

pyacvd-0.3.3-cp39-cp39-win_amd64.whl (71.3 kB view details)

Uploaded CPython 3.9Windows x86-64

pyacvd-0.3.3-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (79.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyacvd-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (100.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyacvd-0.3.3-cp39-cp39-macosx_11_0_arm64.whl (69.1 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pyacvd-0.3.3-cp39-cp39-macosx_10_14_x86_64.whl (76.4 kB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

File details

Details for the file pyacvd-0.3.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 69.4 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyacvd-0.3.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 52eba9ab1c448f06ea85255c68ac1a7da20a0a9f0fb584a85754b40ff6c19ff5
MD5 18fbfaf9037204e39d87ef346bc70e0e
BLAKE2b-256 86bb273fe985fd2b4e655c43e24317cabb235c7a4917e738d1c3e14f31f5078c

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0fd48fd936a79901b16fbc8433813c853f279d3efc991ddc0bd1df7d544ce713
MD5 a321a8400efb862ce2bfce28b588a253
BLAKE2b-256 af1382f5ae0cc42186cf55485fcda816a55a56b4c954a0e311a4c801c6c278cc

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5018d7f920f09c7b2adc5245f36caad5b1ba531a9797213f1b081198fb84412
MD5 787fcf6cc6f05c2d0ec753e1415894fe
BLAKE2b-256 4cef208283a0bbee7899ac7c79c187af924c5f152c48d5845d2037c05b856938

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 945ffbb675ee9a997b609661956ba67fd94374fe41f1c2b06a7db0d8ebe2574c
MD5 b40fe5deb951b39b338541d3c5992f51
BLAKE2b-256 3dd411a449543b73cb58358490cd2eece52f1449f2460da603f7fb48b0a27011

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0875314814ea31734f38b8fa772ee4e273359abf1563f60a0f9578320b63b574
MD5 6fd614e3bc111cf52d2e409f47505f08
BLAKE2b-256 7ddf01689b276a2f787a49a1acbf7c4d7db9a554733b9787c60e995631f8147c

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 69.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyacvd-0.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 401590556ae3d2eb1348bb8991c4cc94abbb1d8e803d11802a005b863f12b798
MD5 3db31ff273db2a0201f73ddfa25eca2e
BLAKE2b-256 ec2b7f9b0748cd0deec6ae16cebd5541df1d3ce3ae0f0da87155a025eb03d48d

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9b21dd5ba7c5b7467de9b3c922fcccba87811e40d7b7e15301e81f6fedf16ed3
MD5 7937e1fbbf39041ff733e65677a9a171
BLAKE2b-256 3a96ef6a948e6bec3ce45ca60087f03a7a2b0020a48dd59544ea8aa5f60b21d7

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ff1beddac4a160a325206c3c0f45b41a90346b193879f58a5130cd0e9434b87
MD5 8f617cda7f81d065438e90c450cb9780
BLAKE2b-256 f00b62a5d151d97ca6c4e93f40791815e731316733c9a96bdda04b60158396be

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37f8b1ea9b3b5806b4fd041078c0c2673c853551e81915e641faa6c2f037f63f
MD5 07672582cf44809dba7eedef1a33a093
BLAKE2b-256 a0269da271a5fd5055323f62083f4c530247a4ad677f2c684df3ed1ad1f665aa

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1787fab799d3b98da9d0ded66722bd0d8c139c6080d70bc445c1b7275294750a
MD5 06629fcdb045c032f0cd014c260b3825
BLAKE2b-256 1294a599105d491f1898d2e4be2d32e51c73a6de33edada5ad6b58b56c3fdbf8

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 70.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyacvd-0.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06128e9124594afb91e1793cb7b353804dd958f3a3702af4a07146815bd6417f
MD5 260d1b8e12aebe3b36da2b2f61dd23dc
BLAKE2b-256 369ab99fba8c64355c6355d603207dd991dafd59e047a9cd0a2b438c43b61770

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4e45b69475af21fefd010dde6ebf8160202050fa5d5f138e2bba0c876ff2bf81
MD5 553d437306798e81d14048cabee3f3b2
BLAKE2b-256 9c0820ca89d79c9bc25a30b2322921a2cdd40c2d4c97c4e71e8a549cc4d683a4

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aceaff46b66c3917bfbc0fb7debacb2aa25a389373686c61d82e6a14674ff134
MD5 caed2a2555c7e55d3919ea3a8c01b74d
BLAKE2b-256 053e07f6b37eb79ad83ec71ae1257dcf390746a079cc4aee3e68ad4b1bde4651

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4cfb7213ad440413df22ba62e53f953368d5c63dcbdf2e7dcad5bc9cc7383171
MD5 be2d83ba030b5a6c7888b8d14953faba
BLAKE2b-256 bdb368b9dbfbae662390ebf4c698c8d8e8202c3a0326b649451f76464135f4db

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 300b7e02a9ef9eee16f23bcbdf66c2c9ecd40d1410886cfa4a56be0c486b4c1c
MD5 e9ccf3761b7ef01fea5c0d6962690551
BLAKE2b-256 f890fd38b07ee58fefe82e19a62548b271b405238df6fef85e5475a7e87b1b90

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 71.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyacvd-0.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e3e7c131e5f12b75756f6f102f6476c7aeddc710d2616cb9152a79f3ac714f0e
MD5 6b204ff9c1aa798589f74f4e208f436c
BLAKE2b-256 292a06d5c11cf4af7e26d41eece5f5ff6a9d3c06fb0c128f037e9ab37781a282

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 08b60df353f218fd8a64334001b2aa4665678819768ee46255726771ef8c0b15
MD5 c55418eb6420037411fd1f0cc6d09033
BLAKE2b-256 ab642b60ed9a6501e77b9fb7322c0e360a574ec805066de6e979ea62f1c7e875

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1ec094382d8388cb5784e294b6741ec1fb633634829e392f4c8f76771d82525
MD5 ac4bfaddc0c1b76da20d79601ec55eb8
BLAKE2b-256 0d262284174be8f708d833591bae113be92cf6676a159a4e4989669b8f3948a6

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8eee80e55362160d19e24069a64305087b5218ac3fcdbc204c5c4edd07505ff
MD5 c095eb385c9e6faa0c1e7df093d04013
BLAKE2b-256 0672a784202b2f4034b7867f3c387791c860bcc521df5de321aa14ef238e1c83

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b1dfca92698e7221311f7442d87099102867ffa903736cb162ad021de5894def
MD5 d7ae1de2c944c8547e609e70dc0efa9a
BLAKE2b-256 84fff5394741ee11868421b21b85cb9ef2490e5f601d296cb75b94698036838b

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 71.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyacvd-0.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d9dd418c931664515baa3abfcd128a59d29db7e4046996de4aafd92174f40164
MD5 6fbec467f8e5f21b26227d3d8f8e5dee
BLAKE2b-256 ae983a1f911c7d8177de2e2d7d8db4194a9ea4d0a4499c6aa903b1947d7f9f93

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7b154b5ec6d2dd100699ea4ce0d1841709690656533a41bc09ac24cf21f960c4
MD5 689b986f30ed2607263a0dc692e60d6a
BLAKE2b-256 48107d3e5184d544d38f4d649f8726562071d6f2991dbf04d1014c3d3f43f575

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61b29f69cb812e13a80795a05e5d6ae329f598249c3ae77ae1d5c3075e42245c
MD5 0fc3cf332bfdac1ff1c45ea494c49527
BLAKE2b-256 9d7b3147a7f7e655e467f9cd695c8f0f945ea0d6c2030ed538cbc5e138e266f2

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0b348a9a7f5dd3af2a42e56ac4b1d75a3f1d1d0db53bcbf13430fb2a61369d4
MD5 94716ad5b8aef3ab3ebbb3212c171adc
BLAKE2b-256 f45065fb325f4b61783e6522535f924217c42f5ae33a876ae35dd7a02d7c5ab5

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0b815690591bdf80b241d9d156f5fb9a864be8965a868056447ee6db14958581
MD5 ea1f2e4e738eff9d94e86c175347f6b5
BLAKE2b-256 2b0701468e6fc5a0d8d513f2a5891cbcd911877b2085e7766c4ab6381461e383

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page