Skip to main content

Uniformly remeshes surface meshes

Project description

https://img.shields.io/pypi/v/pyacvd.svg

This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.

Installation

Installation is straightforward using pip:

$ pip install pyacvd

Example

This example remeshes a non-uniform quad mesh into a uniform triangular mesh.

from pyvista import examples
import pyacvd

# download cow mesh
cow = examples.download_cow()

# plot original mesh
cow.plot(show_edges=True, color='w')
original cow mesh zoomed cow mesh
clus = pyacvd.Clustering(cow)
# mesh is not dense enough for uniform remeshing
clus.subdivide(3)
clus.cluster(20000)

# plot clustered cow mesh
clus.plot()
zoomed cow mesh
# remesh
remesh = clus.create_mesh()

# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
zoomed cow mesh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyacvd-0.3.2-cp313-cp313-win_amd64.whl (71.1 kB view details)

Uploaded CPython 3.13Windows x86-64

pyacvd-0.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (96.3 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pyacvd-0.3.2-cp313-cp313-macosx_11_0_arm64.whl (66.0 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pyacvd-0.3.2-cp313-cp313-macosx_10_14_x86_64.whl (73.3 kB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

pyacvd-0.3.2-cp312-cp312-win_amd64.whl (71.1 kB view details)

Uploaded CPython 3.12Windows x86-64

pyacvd-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (96.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyacvd-0.3.2-cp312-cp312-macosx_11_0_arm64.whl (66.0 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pyacvd-0.3.2-cp312-cp312-macosx_10_14_x86_64.whl (73.3 kB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

pyacvd-0.3.2-cp311-cp311-win_amd64.whl (72.9 kB view details)

Uploaded CPython 3.11Windows x86-64

pyacvd-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (99.6 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyacvd-0.3.2-cp311-cp311-macosx_11_0_arm64.whl (68.5 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pyacvd-0.3.2-cp311-cp311-macosx_10_14_x86_64.whl (76.0 kB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

pyacvd-0.3.2-cp310-cp310-win_amd64.whl (73.0 kB view details)

Uploaded CPython 3.10Windows x86-64

pyacvd-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (99.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyacvd-0.3.2-cp310-cp310-macosx_11_0_arm64.whl (68.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pyacvd-0.3.2-cp310-cp310-macosx_10_14_x86_64.whl (76.2 kB view details)

Uploaded CPython 3.10macOS 10.14+ x86-64

pyacvd-0.3.2-cp39-cp39-win_amd64.whl (73.4 kB view details)

Uploaded CPython 3.9Windows x86-64

pyacvd-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (99.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyacvd-0.3.2-cp39-cp39-macosx_11_0_arm64.whl (68.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pyacvd-0.3.2-cp39-cp39-macosx_10_14_x86_64.whl (76.2 kB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

File details

Details for the file pyacvd-0.3.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 71.1 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyacvd-0.3.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 08ffa7ae4dff1a6642e00c51713293cfdd3686c5d0b83513a2359568bea3c492
MD5 15420cb47d91e5be75b8e651fea10c22
BLAKE2b-256 5342f41f19b1cf5a65e0b4c729d6f53333f633549e04972faf4b593c0b8ef932

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7ede09a9363f9bdc80462c6d6fe7ff28951207c80e9ad3c7a55f01e189550fc
MD5 ac70cf772b62846a42548057616fea7c
BLAKE2b-256 a54523c6f065d0bf3bed24223c3fbf48524c1623daf50c3adaf6d86614163fd2

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bf09297e58c2e242b1770c2c99685a4be5e451849c18e69eca14c5a8defc19b
MD5 6d8ece9d750301a44dfa6d6dc2280ffb
BLAKE2b-256 8ef01d91a515409ec581eb4a234c951592fda09536f3cf8671b9a4d3c432ac3f

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b0d7f35bc69bf2bacf432bc6b0043e4c4f7324485d21b7a15e6953f9a20e196a
MD5 38936dc014e70b25af8912669f9da0ee
BLAKE2b-256 bfebcad05bd2009b3e32ea882f038894354de23a1163e5dc801a6ffc44d45b19

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 71.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyacvd-0.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 63e9260d48b970a8bcd645c1d8c8561543afb8b029b07378028cdccada642b4d
MD5 718f8748d76da6f1a085419807df2dac
BLAKE2b-256 edacbedbc9289d3dc1cdaf08a9b181ab2593127888998858fcf2f568b1a86ea3

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02fb704a3d491b0f6f6ef627a61f84e5bcb838ba8ad2c9578f836553cf86a8d9
MD5 bc718beaa497422a0e4b4e33eea3a4d3
BLAKE2b-256 f0cbede9ecbe5f2f606534fc9d71e672e2da3198faf469bc522451f09059afdc

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32f7bd48bb1d2e901cee00645be4a6cb3c132a1c6e9b93aeb9b62033bd6418cf
MD5 7d1730fc34400bf79fb4efd71489d899
BLAKE2b-256 433ed647a4f8e8e5623a2ca19168a32b3d374d9f6d5d00f870ef8f0da4614265

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bdaf20ef4cdc336ba2b420611fe6bd305ee2fbebf305a641b621ebb5c1ae25a5
MD5 63f3a83b3d08e47d5d07ed8dea1c6f5a
BLAKE2b-256 bcfccac407d08e06be4096a8890cf6b89141025c100a427e3e8c2e6cce2af59a

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 72.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyacvd-0.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 60da31cbf5abf7fd3e0d2e31bcefac2aec4b20eb2eb3d5424a1e2635dd266b7c
MD5 92463d262196847ee7a046a977388bb7
BLAKE2b-256 92d32933adade5b041389193786641c974c6f526bdaba38e86d5187249ebd4d2

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 444e43af0f87cb24d3b07d3c31c8efc948d9381db3961e8a0011bf0f00b325d9
MD5 39994f8e7ef4913f983763ceafaa2297
BLAKE2b-256 be1c52fcb5851781b7fcd0d3bc855b3824cdb4e17adaef50d6e3a596db75c105

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fda016d42fe61b40a84e6c7765a524069327352ca923c29e635f2a97751cb4cb
MD5 96c416fdfdc80a8890248ad0d1145fa6
BLAKE2b-256 b115af0c9041d2a0cccfb2b9fe68aee18432ac7bdeab999682f60546fb7c1f6f

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 def997817fa5195f1fe1f161ada6e66b77c8b7f90b6bd580dac5630fdc6cbeb8
MD5 a158adffef3b6bafe2cd78d0a6160448
BLAKE2b-256 397cb4717cd23b623630aa3b02f638702c9a237e31048ed268b6dbac69e59970

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 73.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyacvd-0.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 938cfeafc7c44ae7802c37ea927a11ccaeccebe022d9c46a474eee3591b0df4c
MD5 3d902d6102ab41aafe379c3e7859d891
BLAKE2b-256 64c1982dde71bfed0be9052ac436c6c25e49f6a14f129e24e0791daf8434db45

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e0b1c94b74b528548521a25cfa6175fc91879cfa1aa2681b436f5069c3bdc10
MD5 3c0ab3a7749e9aa9045c28dd100faf38
BLAKE2b-256 cbd71b1ab343ccdb968685b51d2b23f7bf3da07565f2591ec8eda5165cbfd25b

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cc7440453d966818fd8694d5aef4dff3f9bba13ae35419f14956b8723f121e3
MD5 00946e7f10f926a414c0834c7819a577
BLAKE2b-256 20aa23df9b366eb0bbf3d14f442c5f6e0d88bee6908be2c25733bb3bd3d8c8be

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5766351d3dc0368e6e878c910e610b55f09bb29a3d6a719369ad5d9332042e2b
MD5 8aacdabb3d3af81e7de636912be5c022
BLAKE2b-256 e751dfc7748e94768bd5340a172d7f9dda926b526a1fc94d5320013d941247e1

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 73.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyacvd-0.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1766000c79d70e8b69a69bc63144132cc35f0a7a87be67ae4a2dafadffca44a9
MD5 aca620bfab23533c343494ba5deaa59a
BLAKE2b-256 e451f14901741dc749891ef9b52fbc70e06ad7c8b82a9394c0b6ec8c9634f97e

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f65cc50e3d9a5a3d09adbbfca62e02b83809f2607e9ac2179948810ac868d6d9
MD5 aa0573bdbcb22caf78dc769505bec891
BLAKE2b-256 732da3f5ef726761a16a45aefd2846b9238d318a8306d556653107f88b72bfab

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8cc69ce054daf1569a5bb8c21cb203a60f4dc326c705590653b42d587d4706d
MD5 ce4b4fdbfce4b002efe6bc3ebda86f14
BLAKE2b-256 7f1c3f2d547451c5f2eaf01a81bc5c236db15cd4819352a530fd1ab75a921bb9

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.2-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.2-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 83e41dd40c85ec839ef60f15f1d1ddb065fc454871db8ab35b13a7a142f7957f
MD5 7089e1170b5cc0df0167beecce576fb7
BLAKE2b-256 1d7550e7041aaae0e96c9f1ea83423dff6dd0f79f19fdd080fe76a456d8970ad

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page