Uniformly remeshes surface meshes
Project description
This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.
Installation
Installation is straightforward using pip:
$ pip install pyacvd
Example
This example remeshes a non-uniform quad mesh into a uniform triangular mesh.
from pyvista import examples
import pyacvd
# download cow mesh
cow = examples.download_cow()
# plot original mesh
cow.plot(show_edges=True, color='w')
# mesh is not dense enough for uniform remeshing
# must be an all triangular mesh to sub-divide
cow.tri_filter(inplace=True)
cow.subdivide(4, inplace=True)
clus = pyacvd.Clustering(cow)
clus.cluster(20000)
# plot clustered cow mesh
clus.plot()
# remesh
remesh = clus.create_mesh()
# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyacvd-0.2.0.tar.gz
(12.2 kB
view hashes)
Built Distributions
pyacvd-0.2.0-cp37-cp37m-win_amd64.whl
(122.4 kB
view hashes)
pyacvd-0.2.0-cp36-cp36m-win_amd64.whl
(122.4 kB
view hashes)
pyacvd-0.2.0-cp35-cp35m-win_amd64.whl
(116.2 kB
view hashes)
Close
Hashes for pyacvd-0.2.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0661b6e768bab91a146fe4d800671621ba3f6a9cdccfeed5c14df9dcf0af650d |
|
MD5 | 5a22ccd455866e61c2e6874da81177aa |
|
BLAKE2b-256 | 84e0cac47f77aee23d45c67d9392155cde77b4cda6484127645b5a7e68a348c5 |
Close
Hashes for pyacvd-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b239b3c28156e2ff0266a68ddee0ff529e89bde1c6e084d6d997f55fc9772c5f |
|
MD5 | 8543ec01f3d600f4f244a5a26539be25 |
|
BLAKE2b-256 | 9896e49af3092bb6d15545a558962ae95c061b4de1dbd7b75db910b957790b15 |
Close
Hashes for pyacvd-0.2.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2208ce34ae43523f363fd5761ac736582cd8bd4b9d6f0349d16b1a1d1845f5ee |
|
MD5 | 6235f9cd61bd7ae402a14c787be3efc0 |
|
BLAKE2b-256 | 64280f8f4c082b26686a3319d2e8ae276a28771b2f7c0fcceb3036e066387a6f |
Close
Hashes for pyacvd-0.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5832cfd3039dcfcac83f6f84504b7ac997383f9fa48678a138b7ea685a813174 |
|
MD5 | 07a1c6ef88c560357728b18271c2c5be |
|
BLAKE2b-256 | f59752fdde72d4dc9d1752142ae75371cdd439c8ad7b97924f2746a968925e31 |
Close
Hashes for pyacvd-0.2.0-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c5baef3d64a7f6a0fd6ffbaa9afea0932a280474dfbf258dad248c8cd51b5cd |
|
MD5 | 52c4680e322cf3d9b5ec9b7c0fb610bf |
|
BLAKE2b-256 | 4b954eae549cab148fc78170a32ded4b28eae093ff3e5f433f93b79868190a22 |
Close
Hashes for pyacvd-0.2.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f3542afe0a5815944b6a61ca1dfd474ed4db9801e9f90696c03ee3424b76bed7 |
|
MD5 | 510ddad45870d9e3c768159f2f0a9deb |
|
BLAKE2b-256 | 30fe831bb633b3b1de682ef2752aa79b4934a0a96c59e01de3712b0d1a28d847 |