Uniformly remeshes surface meshes
Project description
This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.
Installation
Installation is straightforward using pip:
$ pip install pyacvd
Example
This example remeshes a non-uniform quad mesh into a uniform triangular mesh.
from pyvista import examples
import pyacvd
# download cow mesh
cow = examples.download_cow()
# plot original mesh
cow.plot(show_edges=True, color='w')
# mesh is not dense enough for uniform remeshing
# must be an all triangular mesh to sub-divide
cow.tri_filter(inplace=True)
cow.subdivide(4, inplace=True)
clus = pyacvd.Clustering(cow)
clus.cluster(20000)
# plot clustered cow mesh
clus.plot()
# remesh
remesh = clus.create_mesh()
# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyacvd-0.2.1.tar.gz
(12.2 kB
view hashes)
Built Distributions
pyacvd-0.2.1-cp37-cp37m-win_amd64.whl
(122.4 kB
view hashes)
pyacvd-0.2.1-cp36-cp36m-win_amd64.whl
(122.4 kB
view hashes)
pyacvd-0.2.1-cp35-cp35m-win_amd64.whl
(116.2 kB
view hashes)
Close
Hashes for pyacvd-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86373972f0a71cf7b5485a7454d0df6741baa8bc938d0c831c2798ee21ff315b |
|
MD5 | 1a10426fab523c6225ecb2faedd6a29e |
|
BLAKE2b-256 | 022cd2ee5fb45d6fcd7b4af0dd8b56d0671124d2239c884d171ace74b2abcc85 |
Close
Hashes for pyacvd-0.2.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f1cf02f2cf39de9d1956f96b4c4d4282d3877f172f884783f88cf23ef8277838 |
|
MD5 | 4e9f13fad23877f7195d6eb48172131a |
|
BLAKE2b-256 | 9c6c863a1478fddc98e32d7615973fa37f391090026de6b07c5acdb9e0c51484 |
Close
Hashes for pyacvd-0.2.1-cp37-cp37m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56a91196023a2cd571cada366a5d235ae1b3055e02e00582980a887308ad41e3 |
|
MD5 | f46f5f614062cf52fa2a0c2e0f0be64b |
|
BLAKE2b-256 | 1d51e7740f8152315b0a4691705d23cf0fcaa03f12536a30e803eaf8bf99890c |
Close
Hashes for pyacvd-0.2.1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ce6774d415967c6670bfd0c993522c3f73171402df01701520e7c116b35d747 |
|
MD5 | 8cdacd66ad588c6934d8452cb3bdc526 |
|
BLAKE2b-256 | ec1832ef677f7bc581004c4b902469d1243e0c0f6e21fd169145aadbea8df531 |
Close
Hashes for pyacvd-0.2.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba3a4644552dad835a17c504596c5c91bfad1e0fe4524dbc258718dbed373abe |
|
MD5 | ee70131cd1309ea277eded5981d73e64 |
|
BLAKE2b-256 | e588daafdc6fda7feb9292bf0218a6f2f230272effa8092b223400881cde39b7 |
Close
Hashes for pyacvd-0.2.1-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5904038198abdc1a7689661df509d56be9716a2efbac414e28a3a32c0d00e1b5 |
|
MD5 | 2766e357a80e2bf16f6390d429a18c4b |
|
BLAKE2b-256 | c980d7f7bf289a2f5b75df403e36c5c0ccee35ddca6dc20a126a12278090fcee |
Close
Hashes for pyacvd-0.2.1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1adbce4c3b604c5b5b7e7502725c2f8a406f18feebc24adbd08c6593c288bbd |
|
MD5 | 0759794679b87987aff1670952f2c777 |
|
BLAKE2b-256 | 22320ca1a361918dea58ce0ba08e1ed84de123bcbb5b0050977dad981178fafd |
Close
Hashes for pyacvd-0.2.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 310f283582deee218a91df622bf87d600a577ba7c10ea9034bc88a8f1c864257 |
|
MD5 | e39de655439d1b2c7675ac23234c64e8 |
|
BLAKE2b-256 | 0e4a7ba3370dab8c6903b17b0a4d425708b5bb45e850d8e0fa5c8cd1cddcc278 |
Close
Hashes for pyacvd-0.2.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e63aa70f630c4699a515aa4b247870bf01328001eb2cff5cb677ec8d032b7e13 |
|
MD5 | 454aac1d325ca6e00c2d4cb02f907656 |
|
BLAKE2b-256 | dde41a8670a2996c37e2e3c154142e8df67b498deab9214d2c7465b91bcd1504 |