Uniformly remeshes surface meshes
Project description
This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.
Installation
Installation is straightforward using pip:
$ pip install pyacvd
Example
This example remeshes a non-uniform quad mesh into a uniform triangular mesh.
from pyvista import examples
import pyacvd
# download cow mesh
cow = examples.download_cow()
# plot original mesh
cow.plot(show_edges=True, color='w')
clus = pyacvd.Clustering(cow)
# mesh is not dense enough for uniform remeshing
clus.subdivide(3)
clus.cluster(20000)
# plot clustered cow mesh
clus.plot()
# remesh
remesh = clus.create_mesh()
# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyacvd-0.2.2.tar.gz
(12.8 kB
view hashes)
Built Distributions
pyacvd-0.2.2-cp37-cp37m-win_amd64.whl
(125.5 kB
view hashes)
pyacvd-0.2.2-cp36-cp36m-win_amd64.whl
(125.5 kB
view hashes)
pyacvd-0.2.2-cp35-cp35m-win_amd64.whl
(119.0 kB
view hashes)
Close
Hashes for pyacvd-0.2.2-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab314942777dc4b60e26affab45c95d074f8c68fb63590c5abbb693300a0ec1a |
|
MD5 | 34baea6d410a9482213c29d2031fe80c |
|
BLAKE2b-256 | c1c3e2f83b62a4b10aa1e8c3b8ce1a6cd7b1aa7eb240d5a3fcea731d490f515a |
Close
Hashes for pyacvd-0.2.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91e09941d274ae3e0771a6924021072f8c3bf677d34cd4958387cf8cd3997ba4 |
|
MD5 | 504dbaf500835f7eeaa09c63b4774fe1 |
|
BLAKE2b-256 | 24061ba33e13b9ac867e21ab5ddf5165876f77e7fe8bea064782cda8cbf11fc1 |
Close
Hashes for pyacvd-0.2.2-cp37-cp37m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02b04e2150ef09560bb7fafadcbf2216ef8369b5fd654a6ec6ae235931d6b6e8 |
|
MD5 | 09c4367d511f2bb605069442b0e8dc8b |
|
BLAKE2b-256 | bcb3b242dbd3c24ea74760caa9c6bd27c1ca2edd964ae37bed4a5ef452aaa99b |
Close
Hashes for pyacvd-0.2.2-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f56c3483ed4d4e0828bdffe6d5ff6d0c5a835896df4c7ce7b6f71e71109162a0 |
|
MD5 | da6dfe9974f4137d793e389db7b31ebc |
|
BLAKE2b-256 | 108e08ccb6839ebd62b69e16fac2f1288859ce4b4d8927d21150a9b2b47199f5 |
Close
Hashes for pyacvd-0.2.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 50e3c2164b530a51389b93c95f24f14acdb57d57451536c4d9d6e5742f4df074 |
|
MD5 | d03b4f47b1e94a95792b66ef3ea91c95 |
|
BLAKE2b-256 | cce3f688b285e0f3385b3b91302437226b370d01febf58b8cfdd7ea1cf7c6488 |
Close
Hashes for pyacvd-0.2.2-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f55fcbf5048eebb6925360b7283172f070e430b18e56bfa831a6e6ae6729ebd |
|
MD5 | 6c88e38cbebba56748cbd6481fa3c149 |
|
BLAKE2b-256 | 7036abd928191f4a3bd736a277dd6e504cc013c287c97f5fdb4904abda1a678d |
Close
Hashes for pyacvd-0.2.2-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8dfa46d314ba0a09e93b50d8633edc86b397c9819755a2aa8fe8afe96eeb8818 |
|
MD5 | aa0bdab30976882a1c7b54bb09e18c23 |
|
BLAKE2b-256 | 8d82fb509bbcd6ba62679add23b1c1f085685cdea1d53641e1555e90eb5e98aa |
Close
Hashes for pyacvd-0.2.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b9530213264ada19f13bc6bf6c06508bbfb995e9f00bfee403ac4a701a89de4 |
|
MD5 | f4d4c46bdb3633ebec21c343f60fae7e |
|
BLAKE2b-256 | 4c9979e2313973c03cb4e11854c28680a42d99f5cfa44c0f43e89520a88a6651 |
Close
Hashes for pyacvd-0.2.2-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72f56353d525c53fd6caa9ce33cd269938f684d45f8cc159367d92453637606c |
|
MD5 | 5803800519372e6b3a89c5f5060128ce |
|
BLAKE2b-256 | fb2261317388c0b139b91e910171e4ae0269f0de1216473ea737fe82d8738cb3 |