Uniformly remeshes surface meshes
Project description
This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.
Installation
Installation is straightforward using pip:
$ pip install pyacvd
Example
This example remeshes a non-uniform quad mesh into a uniform triangular mesh.
from pyvista import examples
import pyacvd
# download cow mesh
cow = examples.download_cow()
# plot original mesh
cow.plot(show_edges=True, color='w')
clus = pyacvd.Clustering(cow)
# mesh is not dense enough for uniform remeshing
clus.subdivide(3)
clus.cluster(20000)
# plot clustered cow mesh
clus.plot()
# remesh
remesh = clus.create_mesh()
# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyacvd-0.2.3.tar.gz
(12.8 kB
view hashes)
Built Distributions
pyacvd-0.2.3-cp37-cp37m-win_amd64.whl
(125.5 kB
view hashes)
pyacvd-0.2.3-cp36-cp36m-win_amd64.whl
(125.4 kB
view hashes)
pyacvd-0.2.3-cp35-cp35m-win_amd64.whl
(119.0 kB
view hashes)
Close
Hashes for pyacvd-0.2.3-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8788f3714a34ad4b1b90b1daea03a8f0322451856386bf339cd16dceea0a917b |
|
MD5 | 5230928f71d6499b74afccb93c783413 |
|
BLAKE2b-256 | a40ad0ecc62f66cc172f258dbb386b02352114502c5bed840dccb6b00f7b7576 |
Close
Hashes for pyacvd-0.2.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1a909d4c1bac0ec0a2c4db6e37e0e74603c2ee172cde289359dd0a3a0ab7967 |
|
MD5 | 6f1bac2d3da93ee2a80697fa7677c942 |
|
BLAKE2b-256 | d45626c0e4e4e8e53415f4687f414056188259e7917d95b41808b7531eccf33f |
Close
Hashes for pyacvd-0.2.3-cp37-cp37m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d95868a7c6e9263db31551e41ad9e099a7ac7daaf090a4171ecf306a72cffe9 |
|
MD5 | 7ae3ecfc8bd8a886456cef94bee0921c |
|
BLAKE2b-256 | 81b773f3c6d77103b0f5cb5ca2802f44ebec1a7842c14b047ff5f459d4ac82ea |
Close
Hashes for pyacvd-0.2.3-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7d79ed43615254511d1ffc5d5366b557cc6d4b562142a6b36d2386a027c1711 |
|
MD5 | 698d9a87723b3c8e2b441694c2f1ba41 |
|
BLAKE2b-256 | 72035ab50ad8b08ed5111dcc7ae89fa202a6fb25c4a848259a956336edff616b |
Close
Hashes for pyacvd-0.2.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | daa8bce8c56fbc5c7117de272cab38de436a38d4b78ba71b863fac998d5b15e6 |
|
MD5 | df6e8743381802dddd7cd2c8d80d4982 |
|
BLAKE2b-256 | fd6abdcf98db2f1ab26961011380b18551f2eb45f7f21d3b1e19eedc8de9108e |
Close
Hashes for pyacvd-0.2.3-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e786afd8a68db842f3d21ba6f486671e0c096d5af32193216dd6f9d3c8afb5d9 |
|
MD5 | 6ce0340b38247882a533eb9c4afa5cd9 |
|
BLAKE2b-256 | aba8327621fc4a3bd997a04932108a70c5b25c975dc5fd8d00049baaa6cbc263 |
Close
Hashes for pyacvd-0.2.3-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cac5e458b5930ac948f38fa193bc219b6cd9544fba24ad08a73c3a785066a134 |
|
MD5 | dc6ecf1ea1b8b046ff493933a472a42d |
|
BLAKE2b-256 | f6929143ef263b748ffe8038d63c4ae933a1e5e06dc3b8a893f8611bc68f454a |
Close
Hashes for pyacvd-0.2.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71c59a783188a8bfe46b4fad7400de3c609feaf05309e9be5d47af284b7de373 |
|
MD5 | 0558c9a0c1b36459948819c213826bc0 |
|
BLAKE2b-256 | c687c67c43a7b91bdc1685c4e7e5716577f52542f6e2986fb3f2eafcbeec070f |
Close
Hashes for pyacvd-0.2.3-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5f85cf23ed06fc29ada5ea076f6ff5e2c4189f571a3b4e4ddbeadf0db4f0874 |
|
MD5 | ccc41943bfa3c8b019fd5c96b5a245f8 |
|
BLAKE2b-256 | 02e4e32f9ddd1020f4d66f43cd0fb4d7399180104ddaf1728cf7d96a0e6269ac |