Skip to main content

yet another dict library

Project description

pyaddict

PyPI version PyPI pyversions PyPI license

Description

Yet another python library to safely work with json data. It implements many useful features such as optional chaining, schema validation, type casting, safe indexing and default values.

Installation

pip install pyaddict

Usage

from pyaddict import JDict, JList
from pyaddict.schema import Object, String, Integer, Array

jdict = JDict({
    "name": "John",
    "age": 30,
    "cars": [
        {"model": "BMW 230", "mpg": 27.5},
        {"model": "Ford Edge", "mpg": 24.1}
    ]
})

# dicts
print(jdict.ensure("name", str))  # John
print(jdict.ensure("age", int))  # 30
print(jdict.ensure("age", str))  # ""
print(jdict.ensureCast("age", str))  # "30"
print(jdict.optionalGet("age", str)) # None
print(jdict.optionalCast("age", str))  # "30"
print(jdict.optionalGet("gender", str)) # None
print(jdict.optionalCast("gender", str)) # None
print(jdict.ensure("gender", str)) # ""

# lists
cars = jdict.ensureCast("cars", JList)
print(cars.assertGet(1, dict))  # {'model': 'Ford Edge', 'mpg': 24.1}
print(cars.assertGet(2, dict))  # AssertionError

# iterators
for car in cars.iterator().ensureCast(JDict):
    print(car.ensureCast("model", str)) # BMW 230, Ford Edge

# chaining
chain = jdict.chain()
print(chain.ensureCast("cars[1].mpg", str))  # "24.1"
print(chain.ensureCast("cars[2].mpg", str))  # ""
# or via direct access (returns Optional[Any]!)
print(chain["cars[2].mpg"])  # IndexError
print(chain["cars[2]?.mpg"])  # None

# schema validation
schema = Object({
    "name": String(),
    "age": String().coerce(),
    "dogs": Array(String()).min(1).optional()
}).withAdditionalProperties()
print(schema.error(jdict)) # None

badSchema = Object({
    "name": String().min(5),
    "age": Float(),
    "cars": Object()
})
print(badSchema.error(jdict)) # ValidationError(expected 4 to be greater than or equal to 5, name: min)

staticSchema = Object({
    "name": "John",
    "age": 30,
    "cars": [
        {"model": "BMW 230", "mpg": 27.5},
        {"model": "Ford Edge", "mpg": 24.1}
    ]
})
print(staticSchema.error(jdict)) # None

mixedSchema = Object({
    "name": String().enum("John"),
    "age": 30,
    "dogs": Array(String()).min(1).optional()
}).withAdditionalProperties()
print(mixedSchema.error(jdict)) # None

The library is fully typed and thus can be used with mypy & pylint. Check out the wiki for more information.

When to use

When working with json data, it is common to have to deal with missing keys, wrong types, etc. This library provides a simple way to deal with these issues. Additionally, it provides easy-to-use typing support for mypy and pylint and detailed documentation. Starting with version 1.0.0, pyaddict includes a schema validation feature inspired by zod. It is especially useful when validating user input, e.g. in web applications.

License

MIT

Author

dxstiny

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyaddict-1.1.0.tar.gz (27.1 kB view details)

Uploaded Source

Built Distribution

pyaddict-1.1.0-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file pyaddict-1.1.0.tar.gz.

File metadata

  • Download URL: pyaddict-1.1.0.tar.gz
  • Upload date:
  • Size: 27.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pyaddict-1.1.0.tar.gz
Algorithm Hash digest
SHA256 b9c2c6c541b26cd4dbc263999cc10d33b4e366dd120f96d1503fbc29f2eb83b3
MD5 78aaefb1e9c93b9ce365813e51941273
BLAKE2b-256 9fb44009f1f31c3e200015d1fcf2c00aa10b79ee9511de7112f3c073f4ebbd25

See more details on using hashes here.

File details

Details for the file pyaddict-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: pyaddict-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pyaddict-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 58bfa199926862aa9a2e5e1636bc13a0846711ea9a9d25b7178b94b4b7aad84f
MD5 efbdd213128be53b1e1f69d073648841
BLAKE2b-256 426e5c3e2ffc817e6a66c71b71af963212f7ff8128bdf18e18b949f097912601

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page