Skip to main content

Python Applications and Libraries for Physics Simulations

Project description

ALPS CI/CD

Algorithms and Libraries for Physics Simulations

This is the legacy reposiory. For more information check README.txt.

Installation instruction

  1. Prerequisites
  • CMake > 3.15
  • Boost sources >= 1.76
  • BLAS/LAPACK
  • HDF5
  • MPI
  • Python >= 3.9 (earlier versions maybe also work but unsupported)
  • C++ compiler (build has been tested on GCC 10.5, GCC 11.4, GCC 12.3 and GCC 13.2)
  • GNU Make or Ninja build system

You need to download and unpack boost library:

wget https://archives.boost.io/release/1.76.0/source/boost_1_86_0.tar.gz
tar -xzf boost_1_86_0.tar.gz

Here we download boost v1.86.0, we have tested ALPS with versions 1.76.0 and 1.86.0.

  1. Downloading and building sources
git clone https://github.com/alpsim/ALPS ALPS
cmake -S ALPS -B alps_build -DCMAKE_INSTALL_PREFIX=</path/to/install/dir> \
      -DBoost_ROOT_DIR=`pwd`/boost_1_86_0                                 \
      -DCMAKE_CXX_FLAGS="-std=c++14 -fpermissive"
cmake --build alps_build -j 8
cmake --build alps_build -t test

This will download the most recent version of ALPS from the github repository, build it, and run unit tests.

  1. Installation
cmake --build alps_build -t install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyalps-2.3.3b0.tar.gz (43.7 MB view details)

Uploaded Source

Built Distributions

pyalps-2.3.3b0-cp312-cp312-manylinux_2_28_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b0-cp312-cp312-macosx_14_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

pyalps-2.3.3b0-cp312-cp312-macosx_13_0_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

pyalps-2.3.3b0-cp311-cp311-manylinux_2_28_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b0-cp311-cp311-macosx_14_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

pyalps-2.3.3b0-cp311-cp311-macosx_13_0_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

pyalps-2.3.3b0-cp310-cp310-manylinux_2_28_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b0-cp310-cp310-macosx_14_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

pyalps-2.3.3b0-cp310-cp310-macosx_13_0_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

pyalps-2.3.3b0-cp39-cp39-manylinux_2_28_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b0-cp39-cp39-macosx_14_0_arm64.whl (13.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

pyalps-2.3.3b0-cp39-cp39-macosx_13_0_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

File details

Details for the file pyalps-2.3.3b0.tar.gz.

File metadata

  • Download URL: pyalps-2.3.3b0.tar.gz
  • Upload date:
  • Size: 43.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyalps-2.3.3b0.tar.gz
Algorithm Hash digest
SHA256 b46c27558a2b572b079eac790cd9104345a8c29dc5a992b49f54bcd7cdfc1bff
MD5 2f0c041bc58450b38b467d7bb4f277fd
BLAKE2b-256 4ab920b1b8aedf6d50ddaf61ef7cba0fc1a85b77fa0a095a00f123f93d77b2cd

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ef106d86bf430883501ab0ef942427a68ee3f7456a8426890914df91d65551ed
MD5 b17e297c570e8d685b6e242681d5b855
BLAKE2b-256 9b985c8bf0d627b1b89074302a6c5c528517b7c59fcd701c931a3f0d65cb0ed5

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6e1f144f97368439128e3dd5865f05a2814d687f91d723d2d32ed1d058bbce1a
MD5 349b67b05f9e78e151f7354399f3111d
BLAKE2b-256 7a7af2150a2157471ee022d4b783875f1a114dbb2dd1b0e3602a5df0ea547816

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 086ae5d97d360de1381ce451ecb5fbd648e18e2c11800e24aa69a45608e39e6d
MD5 44b66648c1d2df28d5c2e3ac01f51d37
BLAKE2b-256 8eb03351361caff1f410c5f8585f5b4ea56490c6902bc2c6d7fe55e7860cd19b

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 26c7b3c68b93951559a521d58c870b3f183e38e8a996ca4516c92bea766812d5
MD5 1f71d0f6b01c7a15a39d7810ca78c7c2
BLAKE2b-256 67f96c670fac950280545506d28ef49dc02b185ddf65d6a50a0dd887c5bffff6

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7a75457cfce8d760eac627055909d6a32d14634b8e516ffcf3ff84e382fbfb99
MD5 36082841d185b72aa5393875dfb22f22
BLAKE2b-256 058c9e9faad4cc0682e78578b66de4f988c3c4f0179823047720391ce7ab364c

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 739a13e6fbdbfd5477fcebd955784088bfdf29905e6edc0965f7abdb6c9e58ef
MD5 2d9e805491259055afd41f8cf78d1d1f
BLAKE2b-256 5d804ba38315f9f22e4033da3976816bb37d4595666f970ec99c9162661fc607

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5de8df9825162bab8d9881744d21c20ec3e03217961dcb3a7761db98441ad892
MD5 e0d13e79ab14ab55e33d1f9c9ec0a7c3
BLAKE2b-256 f7061203ff29297193f72708d90488daad9f3eb595760c42b38dc867434e8f60

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a30832df47f9008465a02421cec201287bc41b7f1797386ce7a2a5f0f3dbf88a
MD5 bfa57fcfa8921fdb983de2fe0f307375
BLAKE2b-256 452461f1d6c4c75fd223f9dfdc4f2f50af02feeb6f452bc64c882259557a8393

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 bbfe97c46c42c4227c34bcfb5c5a2d95caec82294a21d3bd792faff00ad138e9
MD5 08be4c4fc64401cd2096c9b672a8fa54
BLAKE2b-256 9ca176c860bbf367cf621cde2f138b40b7ae8336f63394370706409508e18f77

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e4063932ff117afe16be11ad2d44eb43a8967af33f6c847beee888862c1d91e5
MD5 48ef5dea579b853388fdbbf5000bc1c8
BLAKE2b-256 94ef67ef85370e5a4e54c0279afe398859dc59c2df0caaf7461793ee92f9f574

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 538d372e46f6cd57a440b34152c01b0eab40ae5130e7a90e18594d9cc3d60ca0
MD5 d661caa577a3403b24c65ba1ec3349ef
BLAKE2b-256 117f7c8d50c2c1d272f4287b56c30d9f112b05376f230c96709032050314096a

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 e5b9ea1a620de4037251b70e300513b8aa603dddd5374d941b890c0bc02d0c05
MD5 cc8f01e3a0d6df0c8e3d26ae65cc1f5b
BLAKE2b-256 5e73a2d6301d5ba9fa04515047643b5f7585b80878db91ea97ee36c6d750524a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page