Skip to main content

Python Applications and Libraries for Physics Simulations

Project description

ALPS CI/CD

Python Algorithms and Libraries for Physics Simulations

This is python packages for Algorithms and Libraries for Physics Simulations project. For more information check README.txt.

Installation instruction from binaries

  1. pyALPS can be installed on most Linux and MacOS mcachines from prebuilt biniaries available on PyPi. pyALPS can be installed using pip Python package manager:
pip install pyalps

Installation instruction from sources

  1. Prerequisites
  • CMake > 3.15
  • Boost sources >= 1.76
  • BLAS/LAPACK
  • HDF5
  • MPI
  • Python >= 3.9 and < 3.13 (earlier versions maybe also work but unsupported)
  • C++ compiler (build has been tested on GCC 10.5, GCC 11.4, GCC 12.3 and GCC 13.2)
  • GNU Make or Ninja build system

You need to download and unpack boost library:

wget https://archives.boost.io/release/1.76.0/source/boost_1_86_0.tar.gz
tar -xzf boost_1_86_0.tar.gz

Here we download boost v1.86.0, we have tested ALPS with versions 1.76.0 and 1.86.0.

  1. Downloading and building sources
git clone https://github.com/alpsim/ALPS ALPS
cd ALPS
Boost_ROOT_DIR=`pwd`/../boost_1_86_0 python3 -m build --wheel

This will download the most recent version of ALPS from the github repository, and build pyALPS python package.

  1. Installation

Based on the version of the Python used to build pyALPS, the corresponding Python wheel will be created and stored in dist subdirectory. It can be installed using pip:

pip install dist/pyalps-<specs>.whl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyalps-2.3.3b2.tar.gz (43.7 MB view details)

Uploaded Source

Built Distributions

pyalps-2.3.3b2-cp312-cp312-manylinux_2_28_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b2-cp312-cp312-macosx_14_0_arm64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

pyalps-2.3.3b2-cp312-cp312-macosx_13_0_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

pyalps-2.3.3b2-cp311-cp311-manylinux_2_28_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b2-cp311-cp311-macosx_14_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

pyalps-2.3.3b2-cp311-cp311-macosx_13_0_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

pyalps-2.3.3b2-cp310-cp310-manylinux_2_28_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b2-cp310-cp310-macosx_14_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

pyalps-2.3.3b2-cp310-cp310-macosx_13_0_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

pyalps-2.3.3b2-cp39-cp39-manylinux_2_28_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

pyalps-2.3.3b2-cp39-cp39-macosx_14_0_arm64.whl (6.7 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

pyalps-2.3.3b2-cp39-cp39-macosx_13_0_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

File details

Details for the file pyalps-2.3.3b2.tar.gz.

File metadata

  • Download URL: pyalps-2.3.3b2.tar.gz
  • Upload date:
  • Size: 43.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyalps-2.3.3b2.tar.gz
Algorithm Hash digest
SHA256 ce9ed1ed84a6c32856d3c69f7e14284af023d6dde2638f3397e9f61a0a7c4393
MD5 f8227b2318c25db90ba57952727066cf
BLAKE2b-256 204ee9a6fae36c13aca57d47a7335358de0e1285e7e96843a5ca09de507b30da

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 21b50f4c6b42b2cbcbd4b668a966d9a9e5750626ab8205d61ce9c38eb75c9efd
MD5 46ffc552d75eafb44b0e599c985fc299
BLAKE2b-256 f477664f08ccab7ef2168e3bdbad6f155a68486cbd991edba1a3fe0724a366fd

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dc3592b3c1da24111ef10959b53d49c8c4adffb37f9819e9e8d93a5de04b183b
MD5 785d1cb5dc0e010f04f120abb2822eab
BLAKE2b-256 562e346edf7988f5f7a8af1fb8e3ca84276ba2ae17f813245685a518a760a3bf

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8244d44d33ae278902569e5196f0a11ae3e96e375d67de2bbb40eb01ebf76cee
MD5 89ba52a6eece95757309724a8fdcb925
BLAKE2b-256 4e8a26790138cd8b4422046875a46641e578a1befad6575c94b612958c060827

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 443a0f0db5f4dd524fac80cbc804cc9c61fea99ba2aa71c501d6407bbcb1dd6b
MD5 e709957ab055af2c97bfb39dfcda1226
BLAKE2b-256 d89eef3d9f9bc977cd502a37477286c3c60eadc3004e136affeeb06080ee9589

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c0f926f87f39c8f90c721fde8f9ff4b021b779081d72fa5dd080ebb2eebbf8fc
MD5 fc455ff9544a73c65da9db3c6e3f3439
BLAKE2b-256 24b8b7bb30113f5acb731c902a1fd47c4fd60cf8432c3338fe7390b0125e1706

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 4492609e3ae54bba7f58128764d4cc5222c020a1aff78c527d76c48ae22ac4ac
MD5 6ef8eb350aac963023e367ed6b9a579b
BLAKE2b-256 09cf2078868cc542014787c95fd81c5873d9807c59da30c95232d436ab0cd20a

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 48af3969181eb6d9fa95b7ffc1367952f561cf4381109e8058699ae37ca38ec5
MD5 01be3cf43c74182730dffc1abb058c9d
BLAKE2b-256 015192a3ff4594dcdd7751df13be4a455313c6009f2e45a14ab650455f4e703d

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3f42234a4151a487bc4212395586ce3ae4ba5555646b5106863b0701deaac70d
MD5 29c37589e84ec55ecf895145aee2286f
BLAKE2b-256 e5615651d724b4e8a13f770867970925c9bae51cb9acf6e3dea2dfb841fa0fd3

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 c9f32c4568bcf01745d9a0171c061c99be80bd0f1e21aa98d5aa0a6db42e14e9
MD5 f613192609d712b47036161c1fdb4187
BLAKE2b-256 ab449e9b5c6b47bce70698b72f34978cf374ed76d2441b9fe0d782a6ee7c8474

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 00cd3d0f7cf38e55fb2eb1108a1687ed2cb7cf2e4830a5d69008142726fd6b64
MD5 78aa90cd52e3052fd6b4e087dbfcd506
BLAKE2b-256 3511d6bab3ead8689fbcb7212e223cf9b4017b07fbbf19efeba2df9671442abb

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 946d430e1967aca64555dc0ac8ec72e2466589a1d86c9845cfae2987d558ae00
MD5 73cb33963d2c06349e5c58f1d15a72ab
BLAKE2b-256 c389c8951a218a3a6caffa1797efea3bacdd8f446471147d4826da2ac5e30da6

See more details on using hashes here.

File details

Details for the file pyalps-2.3.3b2-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyalps-2.3.3b2-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 cc6e9ffa2a6e90d9e9782c0229e40a8894ec040d75145adaece85512e05f22c1
MD5 c97499298cb7724a4b6ec1eadda281f8
BLAKE2b-256 74fca0cbba1318fdf111fc364c60cd8659eec35b92abbd783c51e92266d49507

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page