Skip to main content

UNKNOWN

Project description

# ALS-WR : Alternating-Least-Squares with Weighted-λ-Regularization

This is the code to perform ALS-WR as presented by [Zhou et al]

The code is mainly inspired from [Mendeley Ltd]

- *R* ∈ ℝ<sup>*n* × *p*</sup> = (*r*<sub>*i**j*</sub>) denote the sparse user-item matrix.
- 𝒟 is the set of available ratings.
- Assume a low rank constraint *K* on the matrix : *R* = *U**V*<sup>*T*</sup>, *U*, *V* ∈ ℝ<sup>*n* × *K*</sup>, ℝ<sup>*p* × *K*</sup>
- *U*<sub>*i*</sub> and *V*<sub>*j*</sub> denotes respectively the latent features of user *i* and item *j*.
- *n*<sub>*u*<sub>*i*</sub></sub> is the number of ratings provided by user *i*.
- *n*<sub>*v*<sub>*j*</sub></sub> is the number of ratings available for item *j*.
- *J*<sub>*i*</sub> and *L*<sub>*j*</sub> is respectively the set of rated item by user *i* and available ratings for item *j*.

Objective function :
*f*(*U*, *V*)=∑<sub>*i*, *j* ∈ 𝒟</sub>(*r*<sub>*i**j*</sub> − *U*<sub>*i*</sub>*V*<sub>*j*</sub><sup>*T*</sup>)<sup>2</sup> + *λ*(∑<sub>*i*</sub>*n*<sub>*u*<sub>*i*</sub></sub>||*U*<sub>*i*</sub>||<sup>2</sup>+∑<sub>*i*</sub>*n*<sub>*v*<sub>*j*</sub></sub>||*V*<sub>*j*</sub>||<sup>2</sup>)

**Algorithm**

- Input : *R*, *K* (possibly an initialization of *U* or *V* with SVD)
- Until convergence do
- For each user (in parallel if wanted)
- *U*<sub>*i*</sub> = (*V*<sub>*I*<sub>*i*</sub></sub>*V*<sub>*I*<sub>*i*</sub></sub> + *λ**I*<sub>*K*</sub>)<sup>−1</sup>*V*<sub>*I*<sub>*i*</sub></sub>*R*<sub>*i*, *I*<sub>*i*</sub></sub>
- For each item (in parallel if wanted)
- *V*<sub>*j*</sub> = (*U*<sub>*L*<sub>*j*</sub></sub>*U*<sub>*L*<sub>*j*</sub></sub> + *λ**I*<sub>*K*</sub>)<sup>−1</sup>*U*<sub>*L*<sub>*j*</sub></sub>*R*<sub>*L*<sub>*j*</sub>, *j*</sub>

[Zhou et al]: http://www.grappa.univ-lille3.fr/~mary/cours/stats/centrale/reco/paper/MatrixFactorizationALS.pdf
[Mendeley Ltd]: https://github.com/Mendeley/mrec/blob/master/mrec/mf/wrmf.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyalswr-1.0.0.tar.gz (2.5 kB view hashes)

Uploaded source

Built Distribution

pyalswr-1.0.0-py2.py3-none-any.whl (3.0 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page