Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

UNKNOWN

Project Description
# ALS-WR : Alternating-Least-Squares with Weighted-λ-Regularization

This is the code to perform ALS-WR as presented by [Zhou et al]

The code is mainly inspired from [Mendeley Ltd]

- *R* ∈ ℝ<sup>*n* × *p*</sup> = (*r*<sub>*i**j*</sub>) denote the sparse user-item matrix.
- 𝒟 is the set of available ratings.
- Assume a low rank constraint *K* on the matrix : *R* = *U**V*<sup>*T*</sup>, *U*, *V* ∈ ℝ<sup>*n* × *K*</sup>, ℝ<sup>*p* × *K*</sup>
- *U*<sub>*i*</sub> and *V*<sub>*j*</sub> denotes respectively the latent features of user *i* and item *j*.
- *n*<sub>*u*<sub>*i*</sub></sub> is the number of ratings provided by user *i*.
- *n*<sub>*v*<sub>*j*</sub></sub> is the number of ratings available for item *j*.
- *J*<sub>*i*</sub> and *L*<sub>*j*</sub> is respectively the set of rated item by user *i* and available ratings for item *j*.

Objective function :
*f*(*U*, *V*)=∑<sub>*i*, *j* ∈ 𝒟</sub>(*r*<sub>*i**j*</sub> − *U*<sub>*i*</sub>*V*<sub>*j*</sub><sup>*T*</sup>)<sup>2</sup> + *λ*(∑<sub>*i*</sub>*n*<sub>*u*<sub>*i*</sub></sub>||*U*<sub>*i*</sub>||<sup>2</sup>+∑<sub>*i*</sub>*n*<sub>*v*<sub>*j*</sub></sub>||*V*<sub>*j*</sub>||<sup>2</sup>)

**Algorithm**

- Input : *R*, *K* (possibly an initialization of *U* or *V* with SVD)
- Until convergence do
- For each user (in parallel if wanted)
- *U*<sub>*i*</sub> = (*V*<sub>*I*<sub>*i*</sub></sub>*V*<sub>*I*<sub>*i*</sub></sub> + *λ**I*<sub>*K*</sub>)<sup>−1</sup>*V*<sub>*I*<sub>*i*</sub></sub>*R*<sub>*i*, *I*<sub>*i*</sub></sub>
- For each item (in parallel if wanted)
- *V*<sub>*j*</sub> = (*U*<sub>*L*<sub>*j*</sub></sub>*U*<sub>*L*<sub>*j*</sub></sub> + *λ**I*<sub>*K*</sub>)<sup>−1</sup>*U*<sub>*L*<sub>*j*</sub></sub>*R*<sub>*L*<sub>*j*</sub>, *j*</sub>

[Zhou et al]: http://www.grappa.univ-lille3.fr/~mary/cours/stats/centrale/reco/paper/MatrixFactorizationALS.pdf
[Mendeley Ltd]: https://github.com/Mendeley/mrec/blob/master/mrec/mf/wrmf.py
Release History

Release History

This version
History Node

1.0.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pyalswr-1.0.0-py2.py3-none-any.whl (3.0 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Mar 26, 2016
pyalswr-1.0.0.tar.gz (2.5 kB) Copy SHA256 Checksum SHA256 Source Mar 26, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting