Skip to main content

Analysis & visualization of integrated-assessment scenarios

Project description

pyam: analysis & visualization
of integrated-assessment scenarios

license pypi conda latest

Code style: black python pytest ReadTheDocs codecov

doi joss groups.io slack


Overview and scope

The open-source Python package pyam provides a suite of tools and functions for analyzing and visualizing input data (i.e., assumptions/parametrization) and results (model output) of integrated-assessment scenarios.

Key features:

  • Simple analysis of timeseries data in the IAMC format (more about it here) with an interface similar in feel and style to the widely used pandas.DataFrame
  • Advanced visualization and plotting functions (see the gallery)
  • Diagnostic checks for scripted validation of scenario data and results

The complete documentation is hosted on Read the Docs!

Data model

An illustrative example of the timeseries format developed by the Integrated Assessment Modeling Consortium (IAMC) is shown below. The row is taken from the IAMC 1.5°C scenario explorer, showing a scenario from the CD-LINKS project. Read the docs for more information on the IAMC format and the pyam data model.

model scenario region variable unit 2005 2010 2015
MESSAGE CD-LINKS 400 World Primary Energy EJ/y 462.5 500.7 ...
... ... ... ... ... ... ... ...

Tutorials

An introduction to the basic functions is shown in the "first-steps" notebook.

All tutorials are available in rendered format (i.e., with output) as part of the online documentation. The source code of the tutorials notebooks is available in the folder doc/source/tutorials of this repository.

Documentation

The complete documentation is hosted on Read the Docs.

The documentation pages can be built locally, refer to the instruction in doc/README.

Authors & Contributors

This package was initiated and is currently maintained by Matthew Gidden (@gidden) and Daniel Huppmann (@danielhuppmann).

See the complete list of contributors.

License

Copyright 2017-2021 IIASA and the pyam developer team

The pyam package is licensed under the Apache License, Version 2.0 (the "License");
see LICENSE and NOTICE for details.

Install

For basic instructions, please read the docs!

To install from source (including all dependencies) after cloning this repository, simply run

pip install --editable .[tests,optional-io-formats,tutorials]

To check that the package was installed correctly, run

pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyam_iamc-0.11.0-py2.py3-none-any.whl (80.2 kB view details)

Uploaded Python 2Python 3

File details

Details for the file pyam_iamc-0.11.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pyam_iamc-0.11.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 80.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for pyam_iamc-0.11.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cb5dc30319ac4efa639d4cb18902fdff42e0c2a3b6dad53e67fb29cab3ad6ffc
MD5 baf61b769395fa5025addb30a3faf14c
BLAKE2b-256 78ac79edefb9e6395bcbca770a2efc9e01811d23acf321d28f4dcec556be58b6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page