pyAMARES, an Open-Source Python Library for Fitting Magnetic Resonance Spectroscopy Data
Project description
The full documentation for pyAMARES can be found at pyAMARES Documentation.
What is pyAMARES?
The pyAMARES package provides the MRS community with an open-source, easy-to-use MRS fitting method in Python. It imports prior knowledge from Excel or CSV spreadsheets as initial values and constraints for fitting MRS data according to the AMARES model function.
Getting Started
Requirements
Installation
pip install pyAMARES
See the Installation Guide for detailed information.
Run pyAMARES as standard-alone script
amaresFit -f ./pyAMARES/examples/fid.txt -p ./pyAMARES/examples/example_human_brain_31P_7T.csv --MHz 120.0 --sw 10000 --deadtime 300e-6 --ifplot --xlim 10 -20 -o simple_example
Run pyAMARES in a Jupyter Notebook
Try Jupyter Notebook on Google Colab here
import pyAMARES
# Load FID from a 2-column ASCII file, and set the MR parameters
MHz = 120.0 # 31P nuclei at 7T
sw = 10000 # spectrum width in Hz
deadtime = 300e-6 # 300 us begin time for the FID signal acquisition
fid = pyAMARES.readmrs('./pyAMARES/examples/fid.txt')
# Load Prior Knowledge
FIDobj = pyAMARES.initialize_FID(fid=fid,
priorknowledgefile='./pyAMARES/examples/example_human_brain_31P_7T.csv',
MHz=MHz,
sw=sw,
deadtime=deadtime,
preview=False,
normalize_fid=False,
xlim=(10, -20))# Region of Interest for visualization, -20 to 10 ppm
# Initialize the parameter using Levenberg-Marquard method
out1 = pyAMARES.fitAMARES(fid_parameters=FIDobj,
fitting_parameters=FIDobj.initialParams,
method='leastsq',
ifplot=False)
# Fitting the MRS data using the optimized parameter
out2 = pyAMARES.fitAMARES(fid_parameters=out1,
fitting_parameters=out1.fittedParams, # optimized parameter for last step
method='least_squares',
ifplot=False)
# Save the data
out2.styled_df.to_html('simple_example.html') # Save highlighted table to an HTML page
# Python 3.6 does not support to_html.
out2.result_sum.to_csv('simple_example.csv') # Save table to CSV spreadsheet
out2.plotParameters.lb = 2.0 # Line Broadening factor for visualization
out2.plotParameters.ifphase = True # Phase the spectrum for visualization
pyAMARES.plotAMARES(fid_parameters=out1, filename='simple_example.svg') # Save plot to SVG
Fitting Result for Example 31P MRS data
How to cite
If you use pyAMARES in your research, please consider citing the following ISMRM proceeding:
This citation is based on the current conference proceedings and is tentative. A journal paper is expected to be published in the future, and users will be encouraged to cite the formal publication once it is available.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyAMARES-0.3.16.tar.gz
.
File metadata
- Download URL: pyAMARES-0.3.16.tar.gz
- Upload date:
- Size: 918.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8cde5722bf08d5fc7ded6385b57ab6a4098045229b4c4a999b461a6355d3e709 |
|
MD5 | c7eb7fd530dc163644c0568b61164c5e |
|
BLAKE2b-256 | 5e60934bedb5b0cfcb4f682754f539affe6b3aee04a5f4309310003f4d8040b3 |
File details
Details for the file pyAMARES-0.3.16-py3-none-any.whl
.
File metadata
- Download URL: pyAMARES-0.3.16-py3-none-any.whl
- Upload date:
- Size: 253.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b89f35fb892b435eaff41450f8d92de0029fe9b06fe4f84f76d870fe118e31b1 |
|
MD5 | 5fa2f7180dd6259815abacf2247a9090 |
|
BLAKE2b-256 | bb4d4f766772f9cbbd3a0d985c23aa18166307bf627194a848cb6f5edb00fe61 |