Skip to main content

Calculate and plot maps of the model Average Magnetic field and Polar current System (AMPS)

Project description

Overview

Documentation Status PyPI Package latest release doi

Python interface for the Average Magnetic field and Polar current System (AMPS) model.

The AMPS model is an empirical model of the ionospheric current system and associated magnetic field. The model magnetic field and currents are continuous functions of solar wind velocity, the interplanetary magnetic field, the tilt of the Earth’s dipole magnetic field with respect to the Sun, and the 10.7 cm solar radio flux index F10.7. Given these parameters, model values of the ionospheric magnetic field can be calculated anywhere in space, and, with certain assumptions, on ground. The full current system, horizontal + field-aligned, are defined everywhere in the polar regions. The model is based on magnetic field measurements from the low Earth orbiting Swarm and CHAMP satellites.

pyAMPS can be used to calculate and plot average magnetic field and current parameters on a grid. The parameters that are available for calculation/plotting are:

  • field aligned current (scalar)

  • divergence-free current function (scalar)

  • divergence-free part of horizontal current (vector)

  • curl-free part of horizontal current (vector)

  • total horizontal current (vector)

  • eastward or northward ground perturbation corresponding to equivalent current (scalars)

For questions and comments, please contact karl.laundal at ift.uib.no

Installation

Using pip:

pip install pyamps

Dependencies:

Quick Start

>>> # initialize by supplying a set of external conditions:
>>> from pyamps import AMPS
>>> m = AMPS(350, # Solar wind velocity in km/s
              -4, # IMF By (GSM) in nT
              -3, # IMF Bz (GSM) in nT,
              20, # dipole tilt angle in degrees
              80) # F107_index
>>> # make summary plot:
>>> m.plot_currents()
Field-aligned (colour) and horizontal (pins) currents
>>> # All the different current functions can be calculated on
>>> # a pre-defined or user-specified grid.
>>> import numpy as np
>>> mlat, mlt = np.array([75, -75]), np.array([12, 12])
>>> Ju = m.get_upward_current(mlat, mlt)
>>> Ju
array([ 0.23323377, -0.05599236])

Documentation

See http://pyamps.readthedocs.io

References

Laundal, K. M., Finlay, C. C., Olsen, N. & Reistad, J. P. (2018), Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements, Journal of Geophysical Research - Space Physics. doi:10.1029/2018JA025387

pyAMPS uses an updated set of model coefficients compared to the model discussed in the paper. You can use pyAMPS and the scripts in pyamps/climatology_plots/ to produce updated versions of Figures 5-7 and 9-11 from the paper

See also: Laundal, K. M., Finlay, C. C. & Olsen, N. (2016), Sunlight effects on the 3D polar current system determined from low Earth orbit measurements. Earth Planets Space. doi:10.1186/s40623-016-0518-x

Acknowledgments

The code is produced with support from ESA through the Swarm Data Innovation and Science Cluster (Swarm DISC). For more information on Swarm DISC, please visit https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/disc

Badges

docs

Documentation Status

tests

Requirements Status

package

PyPI Package latest release

Changelog

Version 1.1: Added support for calculations on regular mlat/mlt grids with less memory use Version 1.4: Updated model vectors and fixed a bug which affected toroidal field Version 1.4.1: Now using IGRF-13 when calculating dipole position (used in mlt_utils) Version 1.5: Updated model vector + removed LaTeX dependencies + a couple of minor fixes Version 1.6: Updated model vector + removed deprecated Multi-dimensional indexing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyamps-1.6.tar.gz (14.6 MB view details)

Uploaded Source

Built Distribution

pyamps-1.6-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file pyamps-1.6.tar.gz.

File metadata

  • Download URL: pyamps-1.6.tar.gz
  • Upload date:
  • Size: 14.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for pyamps-1.6.tar.gz
Algorithm Hash digest
SHA256 44f26e291d307f4ad8c2e108fc4168710276ecee6d341b5576cb3de4b2df1a81
MD5 9f0ad99d752054c41884a64ae567353c
BLAKE2b-256 812722b516c7a6f53078cc27227c0338dffdda71ac41d39f72738ec0e68f45e7

See more details on using hashes here.

File details

Details for the file pyamps-1.6-py3-none-any.whl.

File metadata

  • Download URL: pyamps-1.6-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for pyamps-1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 81b175ecf63f7cb126d8fc84f0d20d8a33ee04882909b14cea01121d28e90ee8
MD5 ac4ef818c1a17d65a25e4a7d801388c9
BLAKE2b-256 83914ce3562e88c72abb08828df929bef559f01f8c63b9f261776427e34dc5fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page