Skip to main content

Anomaly detection package

Project description

image0 image1

This library is Python projects for anomaly detection. This contains these techniques.

  • Kullback-Leibler desity estimation

  • Singular spectrum analysis

  • Graphical lasso

  • CUMSUM anomaly detection

  • Hoteling T2

  • Directional data anomaly detection

REQUIREMENTS

  • numpy

  • pandas

INSTALLATION

pip install pyanom

USAGE

Kullback-Leibler desity estimation

import numpy as np
from pyanom.density_ratio_estimation import KLDensityRatioEstimation

X_normal = np.loadtxt("../input/normal_data.csv", delimiter=",")
X_error = np.loadtxt("../input/error_data.csv", delimiter=",")

model = KLDensityRatioEstimation(
    band_width=0.1, learning_rate=0.1, num_iterations=100)
model.fit(X_normal, X_error)
anomaly_score = model.predict(X_normal, X_error)

Singular spectrum analysis

import numpy as np
from pyanom.subspace_methods import SSA

y_error = np.loadtxt("../input/timeseries_error2.csv", delimiter=",")

model = SSA()
model.fit(y_error, window_size=50, trajectory_n=25, trajectory_pattern=3, test_n=25, test_pattern=2, lag=25)
anomaly_score = model.score()

Graphical lasso

import numpy as np
from pyanom.structure_learning import GraphicalLasso

X_normal = np.loadtxt("../input/normal_data.csv", delimiter=",")
X_error = np.loadtxt("../input/error_data.csv", delimiter=",")

model = GraphicalLasso()
model.fit(X_normal, rho=0.01, normalize=True)
anomaly_score = model.outlier_analysis_score(X_error)

CUSUM anomaly detection

import numpy as np
from pyanom.outlier_detection import CAD

y_normal = np.loadtxt(
    "../input/timeseries_normal.csv", delimiter=",").reshape(-1, 1)
y_error = np.loadtxt(
    "../input/timeseries_error.csv", delimiter=",").reshape(-1, 1)

model = CAD()
model.fit(y_normal, threshold=1)
anomaly_score = model.score(y_error)

Hoteling T2

import numpy as np
from pyanom.outlier_detection import HotelingT2

X_normal = np.loadtxt("../input/normal_data.csv", delimiter=",")
X_error = np.loadtxt("../input/error_data.csv", delimiter=",")

model = HotelingT2()
model.fit(X_normal)
anomaly_score = model.score(X_error)

Directional data anomaly DirectionalDataAnomalyDetection

import numpy as np
from pyanom.outlier_detection import DirectionalDataAnomalyDetection

X_normal = np.loadtxt(
    "../input/normal_direction_data.csv", delimiter=",")
X_error = np.loadtxt("../input/error_direction_data.csv", delimiter=",")

model = DirectionalDataAnomalyDetection()
model.fit(X_normal, normalize=True))
anomaly_score = model.score(X_error)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyanom-0.0.1b1.tar.gz (8.1 kB view hashes)

Uploaded Source

Built Distribution

pyanom-0.0.1b1-py3-none-any.whl (8.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page