Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://travis-ci.org/akaszynski/pyansys.svg?branch=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.ANSYS(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.Prep7()
ansys.K(1, 0, 0, 0)
ansys.K(2, 1, 0, 0)
ansys.K(3, 1, 1, 0)
ansys.K(4, 0, 1, 0)
ansys.L(1, 2)
ansys.L(2, 3)
ansys.L(3, 4)
ansys.L(4, 1)
ansys.Al(1, 2, 3, 4)
ansys.Aplot()
ansys.Save()
ansys.Exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk()
grid.plot()

# write this as a vtk xml file
grid.Write('hex.vtu')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                         screenshot='hexbeam_disp.png',
                         window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analsyis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matricies
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)
# System natural frequencies
f = (np.real(w))**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

License and Acknowledgments

pyansys is licensed under the MIT license.

ANSYS documentation and functions build from html provided by Sharcnet. Thanks!

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyansys-0.37.2.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

pyansys-0.37.2-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.37.2-cp37-cp37m-manylinux1_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7m

pyansys-0.37.2-cp37-cp37m-macosx_10_6_intel.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.6+ Intel (x86-64, i386)

pyansys-0.37.2-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.37.2-cp36-cp36m-manylinux1_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.6m

pyansys-0.37.2-cp36-cp36m-macosx_10_6_intel.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.6+ Intel (x86-64, i386)

pyansys-0.37.2-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.37.2-cp35-cp35m-manylinux1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.5m

pyansys-0.37.2-cp35-cp35m-macosx_10_6_intel.whl (2.8 MB view details)

Uploaded CPython 3.5m macOS 10.6+ Intel (x86-64, i386)

File details

Details for the file pyansys-0.37.2.tar.gz.

File metadata

  • Download URL: pyansys-0.37.2.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1

File hashes

Hashes for pyansys-0.37.2.tar.gz
Algorithm Hash digest
SHA256 a3c85e4ad5d5e5743951e9221931969f4844b99d3d041b1e6f87184597ad277b
MD5 4b2519c6a9ad15fe7bc36a75523a7a21
BLAKE2b-256 b4822c9e299f6295883c9b962f9885eeddf8643b354f1f30e562dde9e14dc609

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.4

File hashes

Hashes for pyansys-0.37.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7d2d689c2b9c27bc3e6f1e67fc9af9c0a3380076d5fcd7cefe52c6e2ecbccf30
MD5 409ae71e02b7636804eed802dc0ad7e2
BLAKE2b-256 961250efea8e0cf0562a3f995eb923df09fd8395a0cbe894d6ad462685211536

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1

File hashes

Hashes for pyansys-0.37.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8fb24f75f0c4b6cb705a2d47c7689ccc40af25c5eb8e0fda6762b90b18650334
MD5 e619ca2ea3798b5a26935c647f6bd2ed
BLAKE2b-256 ad016a2f9bbc08f6bbe001f8fdf483352b17e09580236a72c2c8b473a19d07aa

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.2

File hashes

Hashes for pyansys-0.37.2-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 b8753e0a50bc9a24b99b8b623fbc80789c2163c18be9831753f189f4c3c42c05
MD5 93947bc68f7a0af0d31603af57905ebe
BLAKE2b-256 b3507af118552b88f628f0413459ab5342701242d5f28ea8873e39f2a05c0f88

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.4

File hashes

Hashes for pyansys-0.37.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e69fc7b5fcd2a64b0cc2493ec68aeada059df2aef20250540aa0c26d47d5a663
MD5 ece13ffcb89ad226bae1345aa94aed29
BLAKE2b-256 fd9284133905377645976a494fa1d03f0c258207e5e9fc3b8723d49da8c7450b

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1

File hashes

Hashes for pyansys-0.37.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8a83a3a715e11110d0162359d1b572c308719abadec57d45bdd3c8139c41fd37
MD5 c74aad759cfc1da854d30280761bd3d6
BLAKE2b-256 fa928b189a282ac943a8248d2935df2690f5a5507cc840d59a8f419793dd57b8

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.2

File hashes

Hashes for pyansys-0.37.2-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 9ea81d385747278a281f7189f74fd29332b224c87ddb34c5dfb88e2df9cda7f1
MD5 cdfb29371a601650fb47b4acd9e01e0f
BLAKE2b-256 52ba8535b530c25876ad309a14b39302eac129a2230f99cdbdfbb0789f76e4ca

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.4

File hashes

Hashes for pyansys-0.37.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 a05c36637f0a2e701ac329b89399567ea047034192465bb4d123c38ab2f34032
MD5 346c0f2eed9e2dea041236ee753609cd
BLAKE2b-256 069f7ebccf4174b0918f5c372245a8a082f4d2ccea168434136410ab3aa5e8c9

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1

File hashes

Hashes for pyansys-0.37.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 11b5ae8187dfa7eb16282b74bfab1d3d2def4a5ebc122d487781d82f434b8715
MD5 ad3c7d9efc92530ea495a75281d16579
BLAKE2b-256 160ae3d3030c7dbbe35c154d97177e64e8f75aed06678b0ad54e1f3a8007f4ee

See more details on using hashes here.

File details

Details for the file pyansys-0.37.2-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: pyansys-0.37.2-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.5m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.2

File hashes

Hashes for pyansys-0.37.2-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 c07292473131f1dd43bdfe2dd474be373baf08539e5109c1bb27a558834cde6c
MD5 5c2e3f5c6d416babc9a82603d542034d
BLAKE2b-256 0637ed470f3e7c6871a80c2f75cadd4106c3dfe08e8368916cc0ebed0aaac938

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page