Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.39.12-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.39.12-cp37-cp37m-manylinux1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m

pyansys-0.39.12-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.39.12-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.39.12-cp36-cp36m-manylinux1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.6m

pyansys-0.39.12-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.39.12-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.39.12-cp35-cp35m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.39.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2efc3cb4543848a7ae7bd4ecc721f8244e31a58a2ef3d7b8bca99dc4863b0d19
MD5 889d0a732d549be1142b3c86f2800eea
BLAKE2b-256 1c835f01be1d953b941b558f67c3cd6f0befa874cc053d32d0a270be79e2d7c9

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.12-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 820493ba2765ff3f02ea20c29365b8a865fde09fa899f9ca801a7d18551f3b28
MD5 90e523da62afd369afc7a1f2bfc9b533
BLAKE2b-256 7c62b94a682943cc1e88a16651886d1bad7e595b23cf1ba070bf3f3ccbefec24

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for pyansys-0.39.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 759dcfbc7e3ba181a729df4950ffffd337c3aed3a81322ab037dc715fcfe25fb
MD5 da75e9d769aee2b8ee81172bd35a3e38
BLAKE2b-256 82c72136e221c31527c1a0ba9886a776ace8072596dae900e866be25bae5539f

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d0c7298918328454ca50adbd487706c4c3824d1080a8f0b1d291e8ee28b2d3ae
MD5 64f09c3ee2270f9e4a50a30d62e30f6f
BLAKE2b-256 5402510f0ca10ac73c908c3bb6dc1e6b625d2e23764a974af9286ee9d84cb940

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.12-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99b1edadabe432fb0ab82d0d6482fcdbfb1cc28cc998240fc8388070cdd4768c
MD5 6d6b7b581b80608ed3001860988282c4
BLAKE2b-256 3e234b766a4c1e9dec5f8f7f84fa4560da9670bb33fb5963103e4281502ea12b

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.12-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1eb268f6db4b13cb516e833f90e8935c2bbec9d60fbd93dbb6ba9a6f7e5c2ac7
MD5 14d5ef8adc64e7505fe7a96210b9a986
BLAKE2b-256 7fb96db237d8245389045bd9340e4a8d0829650263ad687acce1bffe201e5955

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.5.4

File hashes

Hashes for pyansys-0.39.12-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 ae411dacd9bed6d231198184aad7aba31c91539dee7b579ae9ee085b6d5474d8
MD5 bd750ef025cc477142c5f2ea3c0f9663
BLAKE2b-256 06c256c5489aaf1e4d3954488212c3aa9ad1e5052c4d65192e24d141be63a4e5

See more details on using hashes here.

File details

Details for the file pyansys-0.39.12-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.12-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.12-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 31fc11e25d9a73fed0218083b0fc5370a56c324bb70e28b2983ae4a25c4d0d0b
MD5 b9dc7927d13560dcfda9023917450705
BLAKE2b-256 f91238bceeb0f9d0726fa070d6d1f33a002f462a6349ebc89e1ebdd6faae08a6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page