Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.39.14-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.39.14-cp37-cp37m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m

pyansys-0.39.14-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.39.14-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.39.14-cp36-cp36m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m

pyansys-0.39.14-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.39.14-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.39.14-cp35-cp35m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.39.14-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.14-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2beb81d6fe2158bf779f8f11b2441b232044bb9195d45566ed22067f940f359f
MD5 bfbf392b8c0fd759bb3f40090e005cd4
BLAKE2b-256 9ab7639b12cae5b1fd1cb12516ca267906e1890711dc0f29ac82be64550e93e8

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.14-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d87937f040963d4a3c73a6656f3ec5fb51881a154f22789af6d8df054446b92
MD5 1e6b00f9d57335d42d577b988284245d
BLAKE2b-256 f8e966bbbaa132d6570544b8cc96a09c9e45122741e0494c6179ebff6e9f6888

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for pyansys-0.39.14-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cc363fd2950fcd4732ea0a9ae8dc5f9a21d4083b52ac3801246aefaec735a97
MD5 bc2345ff7d79e4786f88664406c5e599
BLAKE2b-256 4b72b94c53f743702133669a0832894b55109edfae97d72e494a9a400eb4cb35

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.14-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2819562e0da1f39a32e2b984490b8c0adc5cc4a068a12d019a5ecb6da0442c98
MD5 eaa738a6ee88efdd3b4c468c4f410d27
BLAKE2b-256 4741ddcc816dbc40f56355c5b92f91d05c0fe79b8f008fcf66750c0f7356e1f5

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.14-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0f505bdee6faf472dc93edc87ee56ff282131d38c314e2e1481ee093e90c1e3b
MD5 203f2203112ed47f5d0a98cf52d389da
BLAKE2b-256 bca29dd61dee4e70e86962fa4148bcfb0f42a9240746eba5279e1b6ac7a87d09

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.14-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd10f9704282c13ab16f07d580231289fb8b9af1da8ebadeadbd6d4e33a9fbdb
MD5 88cd5ee866a9d3b463ae9ee34ab1b2a5
BLAKE2b-256 f1c46f3f83cf141dd137a593c15f6e35d70e8b9c342a555aafcf7b2f224d4d7a

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.39.14-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 20c857ecc1a914a52933370ad546a2e8493b6642a1b8844e131a9e785debb27a
MD5 33d068042ddb1a104682097252331141
BLAKE2b-256 33d406514a390aaaec90a69a70836206084898048e8c4a8103ad64531178a9eb

See more details on using hashes here.

File details

Details for the file pyansys-0.39.14-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.14-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.14-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f9f682256320e86fac84df4ffd9c7b1a35bc8bcb7ff902efccc8aef979f6da70
MD5 ade1f701c2c3aa054d5a6f8c4bab9cc0
BLAKE2b-256 19b53a6b470d68721d4858cdbc8a3b1619144e781a672a67042de71158046c8e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page