Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.39.15-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.39.15-cp37-cp37m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m

pyansys-0.39.15-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.39.15-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.39.15-cp36-cp36m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m

pyansys-0.39.15-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.39.15-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.39.15-cp35-cp35m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.39.15-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.15-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 254105c5917dd4cc8706bfcb871e6a6e000544408f0297f7902ec1371550973c
MD5 978a1633124914a1ddd46f338761ba82
BLAKE2b-256 4634dd2f2420319bacb859d739f7c06b05074a65d40e5ff645f3ac3495d106f4

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.15-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 957358a075525615b5701a09b47ac021f8b1b902108a06b0df2a2fe92a7ca6e1
MD5 60cce3fc95c6a7a70d8f563bce1eb793
BLAKE2b-256 6ac0a116ec1bfbfec78d6d0521f9aba0b4ead5f82ab9967819dc5d0e77ffc826

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for pyansys-0.39.15-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24dc13f5c6d310e78194a39a441db26e4b5cd6b9057e5299848824e8cdc0f245
MD5 c5b53d69ea74d4db79c2b1a22f8a18fb
BLAKE2b-256 8d4267a6dd67e4024c5b75c3e3c65a20abec9a6a9c1b02991753d8b1beeef4f2

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.15-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 edf790971787642d62d5861538a82e9851515a7f4ef364e2aa807b82e941689a
MD5 8ab9a97885ca4af6fd1e371b4d87a684
BLAKE2b-256 d80687c3f82482f9d06b8bfe31d302af0f822687581fcea0aa03094895a67d71

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.15-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ab0e6009d71a5bfecec12dc3aac36896e21983a49c094db4b9fc8e31ef0cab72
MD5 e50b8d6f8b264088ef76b933174857a9
BLAKE2b-256 65765efe1b86653b5d6ee869eec2cc1c0201c76b29e10dfbc358fae4c7652c58

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.15-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3d9b705b38a7f4cdf84788315db8da2d35feae04ba2661eb0206832c3d52fd4
MD5 9be001cbf799edf80a563ebe0fad11ef
BLAKE2b-256 fdc36f11871e2adc945bcd1686ff307b7a376e339188bbf7e45276ea29822c8d

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.39.15-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 99f0801ea553341ec5a3dd688e946d7e4f3d9b4ece4d964a98403ca6922d2bfe
MD5 25527f18ed1eeac8fe9b12e67621086b
BLAKE2b-256 7706b0524b17acee5a6b35a40d336b30aa4a5e5eb412ac609277cf3f4f6e34dd

See more details on using hashes here.

File details

Details for the file pyansys-0.39.15-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.15-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.15-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7404077ff9afdfa131ff491d7ab06a607fe168c58bc54d685bf6cfebecb0b2cc
MD5 fc5955f65525dc0cf5918b37aa2dc354
BLAKE2b-256 89f923c642350cf9eeba9520b1d0188ce1e60bc79322fbf54d6e6782e57d67d1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page