Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.39.17-cp37-cp37m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.39.17-cp37-cp37m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m

pyansys-0.39.17-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.39.17-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.39.17-cp36-cp36m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m

pyansys-0.39.17-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.39.17-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.39.17-cp35-cp35m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.39.17-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.17-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d01cd73005bfcd2068fc9c462a704fa0f5fb3aca39d9d9f454bd421c80470026
MD5 4c584535bc7e3a7c485b1b159628f058
BLAKE2b-256 40dc9b45e4cc32c7f999ed9d93d4ec93b333bdb7a90c85cd9bef506e3590b8ad

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.17-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2bd84bafec6d1b4b85c34636b5a55b8d4ac3be04bd54aaa3683deb4c1ec1c988
MD5 4bdc93e4095fe0b26350e53420385f41
BLAKE2b-256 fe4288062640508a32b53beb7a1d0b299ef9840aa9381193e35c3eedcb5fa0b3

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for pyansys-0.39.17-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6f7e0080cd2594c76e8e3bd10b7af69a0ae3222ea32f1369a6ece3e6c0fcead
MD5 5ab3cb1ede673a7355ab33823b2b5516
BLAKE2b-256 c605376f72804d4f7116121b3df7ba8a9f97bacaa45c171167866200c272ce61

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.17-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 73b8267c676be48643808ed3fcd1901c5fe38eb4582b83d5eb11c81d5de20400
MD5 ccc1e7747472ee767ae485aeffe9d82e
BLAKE2b-256 15f3fb4503025135eb584eb58116fdbc256ccbecb4cf207fed8ac66e7ce668c6

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.17-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 76aa5ae5a8a626adcefb7b0b69e91cf7d8fdefeb95c91cfccdaf29305c048a8f
MD5 6a96a511f4bc46b8f1dec3e5a57db164
BLAKE2b-256 bab960c4aa3deee433a0537c10347908723ec634c4e891b86fe2f5fd06c166c8

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.17-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 485877db2bc22249f0615b2f428e6cff6c571684f2180b89b3e891d153e772c0
MD5 9af7a223ece12eb429f4671d53af4af8
BLAKE2b-256 cbae46382caf198e6d72e23a06bcfba5a3bb3caff36c41ef83b9e1722d147b4c

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.39.17-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 302c24752f283a7ad5fc68110d211aa8a71f16c14ec50367a89e71af4560a377
MD5 92d3a392813911872bd645aef7024d33
BLAKE2b-256 9a574471c73736d9d2b3ce2df6fd0578fd09b22f66c4f4ab1fdfe4e2a3dc3cc8

See more details on using hashes here.

File details

Details for the file pyansys-0.39.17-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.17-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for pyansys-0.39.17-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b065f1fbcc59b0b8e02ba4ceb8df2776e62268c4b40a98b9fbc157144be36dcb
MD5 3500942514188fa778253cdcef8a7a59
BLAKE2b-256 184bd42ea35fcdda7e22b165628cc0d8aab36f18d764eae5fdfcf3675e745b8b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page