Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                         screenshot='hexbeam_disp.png',
                         window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)
# System natural frequencies
f = (np.real(w))**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.39.2-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.39.2-cp37-cp37m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m

pyansys-0.39.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.39.2-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.39.2-cp36-cp36m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m

pyansys-0.39.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.39.2-cp35-cp35m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.39.2-cp35-cp35m-manylinux1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.39.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for pyansys-0.39.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 763fd8a196284c976e02ce008bba11d128f47418f409361c7488db50d2b80de9
MD5 2211d6368c08ed47af0b8d460cddc9c9
BLAKE2b-256 3fe82fd3dd557eb30754b0b4e3d3997fe3d672956e1f71a2e771b29f816a39a3

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for pyansys-0.39.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 142530cc8f03f72cfbbb8fbf120aaf9690c92fb1d20716c396a173cdcb7494a3
MD5 39ec6646e6a46d778198dc9c6d295008
BLAKE2b-256 0a43c055fd165b5915f46b3e90fb1cb4e922d65ae57f045f539ac009c7c549f7

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for pyansys-0.39.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 052f02654341baeae079f11589b9831b4a82e90d0b6ce13f75115cdbf75d2368
MD5 3421003e4cb84d14b5e5315d1db1c0bc
BLAKE2b-256 d3a044c368eb56638dda5694785b06ed26d2bcd9b0160d45cf8f6ee197456fbd

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 070824d50828e41c5590088815102f6b22f782b4ddbbb532807b0d81a123f506
MD5 a7af0cedf3cf0af9101b9d487d52c05a
BLAKE2b-256 0892a34f8ab34cf02ee1c9bc94c7bf0422530375f6d493e46c2efab17226bf11

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for pyansys-0.39.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5b85a8b9f2085483ed23aa892c64e35dc75fabc2f2a53700bceac73beb9af74d
MD5 1653407b7b89d69c70840c74d49b15eb
BLAKE2b-256 e3699a3598500f72c813eaa7ef77ce09b31651edbfece6bec8bd5635507d0a8c

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.39.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a4ba03e8f80b01eace6b5b6e77df34fd158ced07d4b995cb08eed92a843479f
MD5 3a0249ce7d56ff16e66177b3c0748a57
BLAKE2b-256 1ec3db514902e433a21bd43deb8d9a8de9c39384d6722161043a47883c9eaf31

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.4

File hashes

Hashes for pyansys-0.39.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3596ca79d6f40ed5743a5e9e98247dbda4fbb0660f7475c3301b970f74d99e15
MD5 36becf22664be9750ee1be0f827c8329
BLAKE2b-256 b5562ef4d2cb9734352057dd4b6ae8b56f5fc08178b37f9a0ae681924c95e415

See more details on using hashes here.

File details

Details for the file pyansys-0.39.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.39.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for pyansys-0.39.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0f604eb0564767bceda5d194fc17b2a53aef3728f5a3aa74d1c82ed3ee8ddabc
MD5 c18c9138489f5ff08b9b2c5e6332800c
BLAKE2b-256 c3ddb7cf75faf307de262a42200785aa08a87fd0ecb55fa6b873bf5d85697c78

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page