Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.40.1-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.40.1-cp37-cp37m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m

pyansys-0.40.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.40.1-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.40.1-cp36-cp36m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m

pyansys-0.40.1-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.40.1-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.40.1-cp35-cp35m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.40.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c6e21ef5213b4758a11343cb77efea74b9164cd6ff346e8b2ccad88eb15fb482
MD5 c0c6de4e5e26611085028d42729d6df4
BLAKE2b-256 b6a56cef0c0941390c12fdde8d9ddd59460e1b6d866b4a0c680a9e23e80274e0

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4986b9c7c0a3d20cdb33acd7ea90b9ea364548c376f69d0d494b8f3ef42b0592
MD5 6635de346a16ad367e4fba12aa7e3840
BLAKE2b-256 594a9b839997216c2a26f7de5ec8a620b83264dc7fea57c683ac1a03e7cedf1c

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for pyansys-0.40.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 872486e35ecfd37f6b867128118209d8de761780ff54e3a0625a96c33ad08ea2
MD5 158009d8dc6035a7fc3af65987797434
BLAKE2b-256 3cf9c4e2a518f3504df865aa6322f5e1fa9316d59f645e9bb9da5104b32ee31c

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.40.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c3ecbfc3af9474002863881914250ca5268a0a212fae12853f2250b8386a3769
MD5 898730c8a8f0a41bef465b29d1229ba4
BLAKE2b-256 0d799ad20a6c7c75bf07ea27ee6867b6592299552c32118ff0f82c63b750f606

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f9cc30627ada2ec8a35a5f0d08f7cca7475a64e4e0dd8354f4b33319ea1b001
MD5 ed0ce6711a3c795aa1dc7f7c022dd9b5
BLAKE2b-256 31c826731b0e4708c8333b93cfcac3506a6b9d1ae58746aeeb617e143d0ce7c6

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.40.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a465c19e9a3e0c7a6cd2a7a1cc16839856e6e48e738d87ae10768a823d2e8a0
MD5 a3ede44fe991824dced0c531b0c542a5
BLAKE2b-256 1dc8fab3b57f0e3fe914bcbd1891e0aafb780aa19c840922e891f3b0eab9ab04

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.40.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 5479408a2775101eb38493ec4ca8826104826c260c4904b4cc68d397675ac79d
MD5 dbf12d5222a6a77ff51ff628ff9afa5e
BLAKE2b-256 2c952a81ec005e76abbca50b89f511cec71300c6b46f1082943076dafcbd953c

See more details on using hashes here.

File details

Details for the file pyansys-0.40.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8557782779c7f6d839fbd1c9290b084cb63b0c48446c8f927b22d2e016ad30d4
MD5 1dcc89934034ecd88e37238a3a60d462
BLAKE2b-256 0a6e9b7f00f67a61147d9970dbbcd666a67d019ef05af24d77316acd2136fc57

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page