Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
ansys = pyansys.Mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
ansys.prep7()
ansys.k(1, 0, 0, 0)
ansys.k(2, 1, 0, 0)
ansys.k(3, 1, 1, 0)
ansys.k(4, 0, 1, 0)
ansys.l(1, 2)
ansys.l(2, 3)
ansys.l(3, 4)
ansys.l(4, 1)
ansys.al(1, 2, 3, 4)
ansys.aplot()
ansys.save()
ansys.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyansys-0.40.3-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyansys-0.40.3-cp38-cp38-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.8

pyansys-0.40.3-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyansys-0.40.3-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.40.3-cp37-cp37m-manylinux1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m

pyansys-0.40.3-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.40.3-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.40.3-cp36-cp36m-manylinux1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m

pyansys-0.40.3-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.40.3-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.40.3-cp35-cp35m-manylinux1_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.40.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.40.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c3ecdaee427c05b56c6e5f0e3af176e57ae48d6e2b513edc0606477e6940cea7
MD5 c192cb3d919078bae1f89b0722da60b0
BLAKE2b-256 00cee3b695e6edd069cc66885934b837f184fcc1d204c76d7b35f7c56cbada62

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.40.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e40c936cdb8b71d8cb99814168ac910662badeef20f512ffee2f7db62da32d20
MD5 f1ebabc049de280603cb8a52d91c276b
BLAKE2b-256 0c633c0082bcd9e870242fa8afcca4367f23d892cc8d976ae32e371f5e79deac

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.40.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e20854cdc5f54f4c449c59d19d032c3c90c17edffe0447ede8b9659e0efecf90
MD5 498f4f5d3ad9caef15b8a8600d625f3a
BLAKE2b-256 fd00f427b217718d719e4fb6d07326475aea434438d21a6202e163832631d92b

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8d832be0c59aff83d10ec3f000295c1f1a308e74dd489424009f19f3e00b3f9d
MD5 3adbcf7b167f79b667e31d242bc1092b
BLAKE2b-256 3953d1fae5b40f5cfdc16d8739431bd1771cd07d7b5f7670b5cd895e919aa108

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e3faecf907a3de155e3a915e72c0c2e3fbfd0a2858e75a02d6fe4d5bfe307821
MD5 0011c1fee3b53b7eec22e56cdf5c63ed
BLAKE2b-256 191b7c1530ea273c5644d96c366f4dfc357a8f8e074ee007eadb9d870864dd2e

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pyansys-0.40.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b92cdde6e8c65de91fe98185d6924ae66581d8b8790f4edc21fa82d052000e79
MD5 e6dde0d1f73b899ef100733d838cec84
BLAKE2b-256 f3900c75f461d31d8fde92d1e0c931b975ce800eb32a119e6b93efbd7a634fbf

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.40.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 570cd6917b714ee8c6536b758d3d479e267688d8aee90bac0598b8b923abb0b9
MD5 0b0a18ade268c2862f143fb300efbee9
BLAKE2b-256 01395ea074f183edbb3cbef3faccd1758545472711107d3cf243e17bdfa66ffb

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.10

File hashes

Hashes for pyansys-0.40.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 44f30db77f533f669c414aa1356088636e5ef76188c1abe2d352d1d26a461cba
MD5 27f4d04971f3459495f0504eaf602c14
BLAKE2b-256 29d1f7c265e79fd4b3fb58845d7315eb63b89774849bc98c14a46aee50b55559

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.40.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7effbcc7868bceff81d9b7bebfe0d7d2e7d55b3d7bd064528a9b305a0109e183
MD5 3a15256c405d5342434daa7b1d9577ae
BLAKE2b-256 60d3310407e066a66d6c55e6c206a6e73274a9ea9d3b56661f61e73bcdd4894b

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.4

File hashes

Hashes for pyansys-0.40.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 88c9c0c5da032668f0d7fed92f331d973ae6e49eced36f9be3a92924f2fb89a2
MD5 5fff5ea5b543acb75451eea517277ee8
BLAKE2b-256 b5029207b0044c675350d0c0f668f25eb77a35ea9a61bf5b098c2d78f65fdac9

See more details on using hashes here.

File details

Details for the file pyansys-0.40.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.40.3-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.9

File hashes

Hashes for pyansys-0.40.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f820d5e1effb0a0553695e2c19034378d23479068a843e148f5a1178c746528c
MD5 16742377f58692675d45499c673da44b
BLAKE2b-256 2b484c41484afb31f025cad8b82570aa2eb68763b1021ebda6e710079b32bbe8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page