Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
mapdl = pyansys.launch_mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
mapdl.prep7()
mapdl.k(1, 0, 0, 0)
mapdl.k(2, 1, 0, 0)
mapdl.k(3, 1, 1, 0)
mapdl.k(4, 0, 1, 0)
mapdl.l(1, 2)
mapdl.l(2, 3)
mapdl.l(3, 4)
mapdl.l(4, 1)
mapdl.al(1, 2, 3, 4)
mapdl.aplot()
mapdl.save()
mapdl.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyansys-0.42.2.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyansys-0.42.2-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyansys-0.42.2-cp38-cp38-manylinux1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8

pyansys-0.42.2-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyansys-0.42.2-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.42.2-cp37-cp37m-manylinux1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m

pyansys-0.42.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.42.2-cp36-cp36m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.42.2-cp36-cp36m-manylinux1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6m

pyansys-0.42.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.42.2-cp35-cp35m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.42.2-cp35-cp35m-manylinux1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.42.2.tar.gz.

File metadata

  • Download URL: pyansys-0.42.2.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.42.2.tar.gz
Algorithm Hash digest
SHA256 8fa88a2133a7e015c2449aca4d9186758eafbb752031547ad8d167581a7dd5c1
MD5 7b1d582144c17830805b83d1dac33159
BLAKE2b-256 c2fb22e9d0ec93904fd8d460e643821b8ab6ba0cf51488ac5ca7a9eca278fe56

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for pyansys-0.42.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6dffbf2bffc75e5c38eec6ffec21e79b86edc8f003f25b7e21c3b37b138e2da3
MD5 bd62caf269fc6f2302643aca95ad4381
BLAKE2b-256 2d125538e9d6a45aeda3f97036e94df820ff9dd9b78ac1beb043a9e35bc462a4

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for pyansys-0.42.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6213406437b7c0a06579f1ee4217bfea173122d67a80f4cb51e7ce9f2c7052b9
MD5 eb7177c94dfb669e0fc62f01f8a120e8
BLAKE2b-256 9611056877dee5ae0eb14b1eee384d1b75c80e78b70a9c64f1282847ba6aa4d2

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3

File hashes

Hashes for pyansys-0.42.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ac5bb4e3d9af3bc718bf7a10ade6adf221ea81678baf361f55c6f36b76a210d
MD5 0219396535c615b633fa5e41daaccb3b
BLAKE2b-256 1d0b7d618ffd7f93aaa126067067b464b0de3992bb8564c702cf2bd557609615

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for pyansys-0.42.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 aa7dbb53c5ef7185831a93eb0089d342b43f1a69d656b453cdd02677db32973b
MD5 358acbd102b25e95ff4194a44c175df9
BLAKE2b-256 c50b2d4c3ff7e1097a1f5d9e4cc1d92535211fcc554ec62e86d855f31a6b923f

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for pyansys-0.42.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4f9b136ec3fd3704fd55dc3fb3c921a387c25c9b66d5f677b16e7aa0ebb8eaa9
MD5 fe355e858b93d49ba38e4c81a55f5d7f
BLAKE2b-256 7a559058838e55223083f973bcc6d12453601ab6ea55e286580fc985457b60fd

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.7

File hashes

Hashes for pyansys-0.42.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fe99841edb86f63b1d0e559cc5b5306ee370e5aced0d33d80b94efec561cae1
MD5 eee1ae08d0544d4b2fa848cd45babd6f
BLAKE2b-256 58b84d63f10c69912bf5f5df29ff119e22efb4e8b3031d722abeea762cd55a9b

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.42.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0201ea90e9f5c77359178806f5ebfef355f66f74528b8cc5f9fdacc6b197ba27
MD5 b124a4bb1dc3f2a63ab54d4ec7158552
BLAKE2b-256 344261cc9ade947509ef539fa4264c71bd88511154462ad49d254f1ce5b37e69

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.11

File hashes

Hashes for pyansys-0.42.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d0a0311d20f7530ef58eaef08d0cc548762ec1fcc2841d3ad8b0ffe6d32b776b
MD5 e67b085f06c687bd5f6d0476cbf87e43
BLAKE2b-256 169114422b2764ea468893d37ba5dbb7696a914ba579543410cb9372998a9493

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.42.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 802f9eae33af64b3f247faee4f22241df67786b3af758dfc8b1b2dea20a67203
MD5 ab3d92f6b25065c1e56cb2da3b0e531e
BLAKE2b-256 0d5138cd447873b65503fb3f534ab9dad3c4bbe3095d9153e47d9652cf693f6f

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.42.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 eb0c69bcd1ce7fb830b646639416afa197efdbb9ea43ae24fb9ce128b748c534
MD5 4f73d3687d24cf8f914cc61a7bc78db1
BLAKE2b-256 0893d503f44c9e5d22c3f3b7102ad976b24bb16fad398fb96bab4684e6ed7ed3

See more details on using hashes here.

File details

Details for the file pyansys-0.42.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.42.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.5.9

File hashes

Hashes for pyansys-0.42.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 86c52bab4f71ea34eba4182b1d84e80cb73cd1c10a8bc675ee09c6f3d37f9ac0
MD5 74f392e85419d5e166c10a605cad1062
BLAKE2b-256 24adc1d4a1ff5bd35077a78dc34b2cb74e3e23c4554d4a6f8146f3494118b61e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page