Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master https://zenodo.org/badge/70696039.svg https://img.shields.io/discord/412182089279209474.svg?label=Discord&logo=discord&logoColor=ffffff&color=7389D8&labelColor=6A7EC2
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details, and the Examples gallery for some examples.

Be sure to visit the discord channel at pyansys Discord Channel

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using either MAPDL’s internal plotting with matplotlib, or interactive plots using VTK:

import os
import pyansys

path = os.getcwd()
mapdl = pyansys.launch_mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
mapdl.prep7()
mapdl.k(1, 0, 0, 0)
mapdl.k(2, 1, 0, 0)
mapdl.k(3, 1, 1, 0)
mapdl.k(4, 0, 1, 0)
mapdl.l(1, 2)
mapdl.l(2, 3)
mapdl.l(3, 4)
mapdl.l(4, 1)
mapdl.al(1, 2, 3, 4)
mapdl.aplot()
mapdl.save()

Here is an example plot from one of the more complex examples:

https://github.com/akaszynski/pyansys/raw/master/docs/mapdl/images/vplot_vtk_small.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
Hexahedral beam

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp_small.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress_small.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape_small.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

Citing this Module

If you use pyansys for research and would like to cite the module and source, you can visit pyansys Zenodo and generate the correct citation. For example, the BibTex citation is:

@software{alexander_kaszynski_2020_4009467,
  author       = {Alexander Kaszynski},
  title        = {{pyansys: Python Interface to MAPDL and Associated
                   Binary and ASCII Files}},
  month        = aug,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {0.43.2},
  doi          = {10.5281/zenodo.4009467},
  url          = {https://doi.org/10.5281/zenodo.4009467}
}

Please visit the link above for the most recent citation as the citation here may not be current.

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyansys-0.44.2.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyansys-0.44.2-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyansys-0.44.2-cp38-cp38-manylinux1_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8

pyansys-0.44.2-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyansys-0.44.2-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.44.2-cp37-cp37m-manylinux1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m

pyansys-0.44.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.44.2-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.44.2-cp36-cp36m-manylinux1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.6m

pyansys-0.44.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.44.2-cp35-cp35m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.44.2-cp35-cp35m-manylinux1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.44.2.tar.gz.

File metadata

  • Download URL: pyansys-0.44.2.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.44.2.tar.gz
Algorithm Hash digest
SHA256 81c89ae442bc8facf96c62271926ad1ca31ddb15ec59db829447f57d52719ca2
MD5 673b4a52b8421d2d5064ee1c985475ff
BLAKE2b-256 c445e0a3dcee4c2d0d7f0d483d32db52594d03ade8bf3cbdbda2a7a1a244afb3

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for pyansys-0.44.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1686bda0ab7c48a2e2c6eb8a90f22ed56da1e5ab46688ca507fbf337c5b541bb
MD5 d3a17205d4e92238ac5b8fdfa464840f
BLAKE2b-256 5b604daf675b3a80149eec7d8d4114cc8f21b104b38bcaa2b94fc5a5d4634381

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for pyansys-0.44.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0ee13981194b2116dac108ed058ab219825e32d4a1648961362ef040c620bfa8
MD5 f9bdd53acc0d7824550b187c6a51227d
BLAKE2b-256 e2cd48902319a0464601b237a3ca2dcefdde47c0f95d5ffaf754afdc8da582e2

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for pyansys-0.44.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c967222dcc254e169d43ac002d4a135646760db41d90333c584a4954e552d067
MD5 b63990bfeb6eddf177cd8e575f04fd18
BLAKE2b-256 7925491116d1b718b2aef847a29157c38291fe0e430849703f90cc4ca573433d

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for pyansys-0.44.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0f924a7af9bd02773640896d2053a1b2e199d6a8dbe58049a620417ecc586020
MD5 65e0fbbe802a2711a2253a06a2aeb693
BLAKE2b-256 1ec253cc056675a608427857936701ac992029a19d0ddd362c38299cdc5f73f6

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for pyansys-0.44.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aeba1a178af5a4c1c5df09b8738392395edba9df844e32282609e1a49e643b8a
MD5 f48f5411cec1a8ed7506f4ffc16ab105
BLAKE2b-256 417928cb8585ba4ae2e54852cc9765ed8707606e1aad18b8eb5b540b195a41cf

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for pyansys-0.44.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5108bc01afd11005cbfca95ede47e0de65c5f8de87e2e9625d63c053646e1d91
MD5 2a550eb7b8f334ba7387c6d4cf6f3f4d
BLAKE2b-256 e5f9eab55fab8a10cbaa318f19974ee34d93233bb5f2117bbc27517fe4c8bd39

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.44.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 38b7364fce2b82ca9e09c3954b174459f766d62ab97f0888661a0fc37f04302d
MD5 56f58d9c361ad9fbdcdf336d3f182d0d
BLAKE2b-256 18e334745fdc566175503842dea533afcc2bad7219ef57365780d70ffe631c07

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.12

File hashes

Hashes for pyansys-0.44.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 170ff0cd630cdd57f238d88d55e529ef95df9a20a4f6038e6208812b523c0c37
MD5 0fb6c98cc97ebea41554e6d001cac5bf
BLAKE2b-256 7b16490365bb333ac4a92a9f21faf2285e2be6bb9e3015ad94fd73e1d3f9dd58

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.8

File hashes

Hashes for pyansys-0.44.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 027f09c7627eacc6d8fe4ea5931f14d359e43ebb3987e186e28b19ae395af2cf
MD5 f558e009e668e5c9daa9a3adb6a590d1
BLAKE2b-256 7a253c7c4dbf249857e0ef7737eed3f649f65840829ba9087e7685274ed38ad4

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.5.4

File hashes

Hashes for pyansys-0.44.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 20b32042697f2db019cfef0cbf4553a270839415a6e65dced823bd051d1d3640
MD5 754a6d8f540c1c5703f593052b6c7349
BLAKE2b-256 9ddd39477087c9fa3c55fd7bc09430d57960b7fd50963c479524839f4a884c13

See more details on using hashes here.

File details

Details for the file pyansys-0.44.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.44.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.5.10

File hashes

Hashes for pyansys-0.44.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 79f28bfd5eca9ca34ebd2a409758e44c1565fc29d1d1f5dea3603ed515f90294
MD5 7159578c1ed4dbf688bbd26ced1facac
BLAKE2b-256 62b50df69517fe9132bf47318fbc248e9c7ddcf1a3cb86740fc17de207f4647a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page