Tools for convenient interface creation over various types of data in a declarative way.
Project description
Tools for convenient interface creation over various types of data in a declarative way.
Installation
The current stable release:
pip install pyanyapi
or:
easy_install pyanyapi
or from source:
$ sudo python setup.py install
Usage
The library provides an ability to create API over various content. Currently there are bundled tools to work with HTML, XML, CSV, JSON and YAML. Initially it was created to work with requests library.
Basic setup
Basic parsers can be declared in the following way:
from pyanyapi import HTMLParser
class SimpleParser(HTMLParser):
settings = {'header': 'string(.//h1/text())'}
>>> api = SimpleParser().parse('<html><body><h1>Value</h1></body></html>')
>>> api.header
Value
Or it can be configured in runtime:
from pyanyapi import HTMLParser
>>> api = HTMLParser({'header': 'string(.//h1/text())'}).parse('<html><body><h1>Value</h1></body></html>')
>>> api.header
Value
To get all parsing results as a dict there is parse_all method. All properties (include defined with @interface_property decorator) will be returned.
from pyanyapi import JSONParser
>>> JSONParser({
'first': 'container > 0',
'second': 'container > 1',
'third': 'container > 2',
}).parse('{"container":["first", "second", "third"]}').parse_all()
{
'first': 'first',
'second': 'second',
'third': 'third',
}
Complex setup
In some cases you may want to apply extra transformations to result list. Here comes “base-children” setup style.
from pyanyapi import HTMLParser
class SimpleParser(HTMLParser):
settings = {
'test': {
'base': '//test',
'children': 'text()|*//text()'
}
}
>>> api = SimpleParser().parse('<xml><test>123 </test><test><inside> 234</inside></test></xml>')
>>> api.test
['123 ', ' 234']
There is another option to interact with sub-elements. Sub parsers!
from pyanyapi import HTMLParser
class SubParser(HTMLParser):
settings = {
'href': 'string(//@href)',
'text': 'string(//text())'
}
class Parser(HTMLParser):
settings = {
'elem': {
'base': './/a',
'parser': SubParser
}
}
>>> api = Parser().parse("<html><body><a href='#test'>test</a></body></html>")
>>> api.elem[0].href
#test
>>> api.elem[0].text
test
>>> api.parse_all()
{'elem': [{'href': '#test', 'text': 'test'}]}
Also you can pass sub parsers as classes or like instances.
Settings inheritance
Settings attribute is merged from all ancestors of current parser.
from pyanyapi import HTMLParser
class ParentParser(HTMLParser):
settings = {'parent': '//p'}
class FirstChildParser(ParentParser):
settings = {'parent': '//override'}
class SecondChildParser(ParentParser):
settings = {'child': '//h1'}
>>> FirstChildParser().settings['parent']
//override
>>> SecondChildParser().settings['parent']
//p
>>> SecondChildParser().settings['child']
//h1
>>> SecondChildParser({'child': '//more'}).settings['child']
//more
Results stripping
Parsers can automagically strip trailing whitespaces with strip=True option.
from pyanyapi import XMLParser
>>> settings = {'p': 'string(//p)'}
>>> XMLParser(settings).parse('<p> Pcontent </p>').p
Pcontent
>>> XMLParser(settings, strip=True).parse('<p> Pcontent </p>').p
Pcontent
HTML & XML
For HTML and XML based interfaces XPath 1.0 syntax is used for settings declaration. Unfortunately XPath 2.0 is not supported by lxml. XML is about the same as HTMLParser, but uses a different lxml parser internally. Here is an example of usage with requests:
>>> import requests
>>> import pyanyapi
>>> parser = pyanyapi.HTMLParser({'header': 'string(.//h1/text())'})
>>> response = requests.get('http://example.com')
>>> api = parser.parse(response.text)
>>> api.header
Example Domain
If you need, you can execute more XPath queries at any time you want:
from pyanyapi import HTMLParser
>>> parser = HTMLParser({'header': 'string(.//h1/text())'})
>>> api = parser.parse('<html><body><h1>This is</h1><p>test</p></body></html>')
>>> api.header
This is
>>> api.parse('string(//p)')
test
XML Objectify
Lxml provides interesting feature - objectified interface for XML. It converts whole XML to Python object. This parser doesn’t require any settings. E.g:
from pyanyapi import XMLObjectifyParser
>>> XMLObjectifyParser().parse('<xml><test>123</test></xml>').test
123
JSON
Settings syntax in based on PostgreSQL statements syntax.
from pyanyapi import JSONParser
>>> JSONParser({'id': 'container > id'}).parse('{"container":{"id":"123"}}').id
123
Or you can get access to values in lists by index:
from pyanyapi import JSONParser
>>> JSONParser({'second': 'container > 1'}).parse('{"container":["first", "second", "third"]}').second
second
And executes more queries after initial parsing:
from pyanyapi import JSONParser
>>> api = JSONParser({'second': 'container > 1'}).parse('{"container":[],"second_container":[123]}')
>>> api.parse('second_container > 0')
123
YAML
Equal to JSON parser, but works with YAML data.
from pyanyapi import YAMLParser
>>> YAMLParser({'test': 'container > test'}).parse('container:\n test: "123"').test
123
Regular Expressions Interface
In case, when data has wrong format or is just very complicated to be parsed with bundled tools, you can use a parser based on regular expressions. Settings are based on Python’s regular expressions. It is the most powerful parser, because of its simplicity.
from pyanyapi import RegExpParser
>>> RegExpParser({'error_code': 'Error (\d+)'}).parse('Oh no!!! It is Error 100!!!').error_code
100
And executes more queries after initial parsing:
from pyanyapi import RegExpParser
>>> api = RegExpParser({'digits': '\d+'}).parse('123abc')
>>> api.parse('[a-z]+')
abc
Also, you can pass flags for regular expressions on parser initialization:
from pyanyapi import RegExpParser
>>> RegExpParser({'test': '\d+.\d+'}).parse('123\n234').test
123
>>> RegExpParser({'test': '\d+.\d+'}, flags=re.DOTALL).parse('123\n234').test
123
234
CSV Interface
Operates with CSV data with simple queries in format ‘row_id:column_id’.
from pyanyapi import CSVParser
>>> CSVParser({'value': '1:2'}).parse('1,2,3\r\n4,5,6\r\n').value
6
Also, you can pass custom kwargs for csv.reader on parser initialization:
from pyanyapi import CSVParser
>>> CSVParser({'value': '1:2'}, delimiter=';').parse('1;2;3\r\n4;5;6\r\n').value
6
AJAX Interface
AJAX is a very popular technology and often use JSON data with HTML values. Here is an example:
from pyanyapi import AJAXParser
>>> api = AJAXParser({'p': 'content > string(//p)'}).parse('{"content": "<p>Pcontent</p>"}')
>>> api.p
Pcontent
It uses combination of XPath queries and PostgreSQL-based JSON lookups. Custom queries execution is also available:
from pyanyapi import AJAXParser
>>> api = AJAXParser().parse('{"content": "<p>Pcontent</p><span>123</span>"}')
>>> api.parse('content > string(//span)')
123
Custom Interface
You can easily declare your own interface. For that you should define execute_method method. And optionally perform_parsing. Here is an example of naive CSVInterface, which provides an ability to get the column value by index. Also you should create a separate parser for that.
from pyanyapi import BaseInterface, BaseParser
class CSVInterface(BaseInterface):
def perform_parsing(self):
return self.content.split(',')
def execute_method(self, settings):
return self.parsed_content[settings]
class CSVParser(BaseParser):
interface_class = CSVInterface
>>> CSVParser({'second': 1}).parse('1,2,3').second
2
Extending interfaces
Also content can be parsed with regular Python code. It can be done with special decorators interface_method and interface_property.
Custom method example:
from pyanyapi import HTMLParser, interface_method
class ParserWithMethod(HTMLParser):
settings = {'occupation': 'string(.//p/text())'}
@interface_method
def hello(self, name):
return name + ' is ' + self.occupation
>>> api = ParserWithMethod().parse('<html><body><p>programmer</p></body></html>')
>>> api.occupation
programmer
>>> api.hello('John')
John is programmer
Custom property example:
from pyanyapi import HTMLParser, interface_property
class ParserWithProperty(HTMLParser):
settings = {'p': 'string(.//p/text())', 'h1': 'string(.//h1/text())'}
@interface_property
def test(self):
return self.h1 + ' ' + self.p
>>> api = ParserWithProperty().parse('<html><body><h1>This is</h1><p>test</p></body></html>')
>>> api.h1
This is
>>> api.p
test
>>> api.test
This is test
Certainly the previous example can be done with more complex XPath expression, but in general case XPath is not enough.
Complex content parsing
Combined parsers
In situations, when particular content type is unknown before parsing, you can create combined parser, which allows you to use multiply different parsers transparently. E.g. some server usually returns JSON, but in cases of server errors it returns HTML pages with some text. Then:
from pyanyapi import CombinedParser, HTMLParser, JSONParser
class Parser(CombinedParser):
parsers = [
JSONParser({'test': 'test'}),
HTMLParser({'error': 'string(//span)'})
]
>>> parser = Parser()
>>> parser.parse('{"test": "Text"}').test
Text
>>> parser.parse('<body><span>123</span></body>').error
123
Another example
Sometimes different content types can be combined inside single string. Often with AJAX requests.
{"content": "<span>Text</span>"}
You can work with such data in the following way:
from pyanyapi import HTMLParser, JSONParser, interface_property
inner_parser = HTMLParser({'text': 'string(.//span/text())'})
class AJAXParser(JSONParser):
settings = {'content': 'content'}
@interface_property
def text(self):
return inner_parser.parse(self.content).text
>>> api = AJAXParser().parse('{"content": "<span>Text</span>"}')
>>> api.text
Text
Now AJAXParser is bundled in pyanyapi, but it works differently. But anyway, this example can be helpful for building custom parsers.
Python support
PyAnyAPI supports Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5, PyPy and partially PyPy3 and Jython. Unfortunately lxml doesn’t support PyPy3 and Jython, so HTML & XML parsing is not supported on PyPy3 and Jython.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyanyapi-0.6.0.tar.gz
.
File metadata
- Download URL: pyanyapi-0.6.0.tar.gz
- Upload date:
- Size: 30.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9f43190509e4154944b31bd0855a85d525f23b4dc3d5867a4490c2ff9aed064 |
|
MD5 | ab63d6eda0e097395e35ced73d466149 |
|
BLAKE2b-256 | bbc710d95365bd0421715f2d57f9b002e41a7ccc6d87798e89258b0feb4cee70 |
File details
Details for the file pyanyapi-0.6.0-py2.py3-none-any.whl
.
File metadata
- Download URL: pyanyapi-0.6.0-py2.py3-none-any.whl
- Upload date:
- Size: 9.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 570ccfc035a7fd606ca6b14e3d3943e7305888762abf69a7f5d3bb78e96d25ab |
|
MD5 | f3cf0a664112d0ddf64a7b9f6a491253 |
|
BLAKE2b-256 | 318321f26ebcdcf95189d1d71d616906991cc51b6f98e34880ef1fd46330a444 |