Skip to main content

Bindings to ApproxMC, an approximate model counter

Project description

pyapproxmc: bindings to the ApproxMC model counter

This directory provides Python bindings to ApproxMC on the C++ level, i.e. when importing pyapproxmc, the ApproxMC counter becomes part of the Python process itself.

Installing

pip install pyapproxmc

Compiling

If you don't want to use the pip package, you can compile it:

apt-get install python-dev
cd python
git clone https://github.com/msoos/cryptominisat
git clone https://github.com/meelgroup/arjun
cd ..
python -m build

You will then find the files under "dist/".

Usage

import pyapproxmc
c = pyapproxmc.Counter()
c.add_clause([1,2,3])
c.add_clause([3,20])
count = c.count()
print("Approximate count is: %d*2**%d" % (count[0], count[1]))

The above will print that Approximate count is: 88*2**13. Since the largest variable in the clauses was 20, the system contained 220 (i.e. 1048576) potential models. However, some of these models were prohibited by the two clauses, and so only approximately 88*213 (i.e. 720896) models remained.

If you want to count over a projection set, you need to call count(projection_set), for example:

import pyapproxmc
c = pyapproxmc.Counter()
c.add_clause([1,2,3])
c.add_clause([3,20])
count = c.count(range(1,10))
print("Approximate count is: %d*2**%d" % (count[0], count[1]))

This now prints Approximate count is: 56*2**3, which corresponds to the approximate count of models, projected over variables 1..10.

Counter Object

You can give the following arguments to Counter:

  • seed -- sets the random seed
  • verbosity -- sets the verbosity of the system (default = 0)
  • epsilon -- Tolerance parameter, i.e. sets how approximate the returned count is. Default = 0.8
  • delta -- Confidence parameter, i.e. sets how probabilistically correct the returned count is. Default = 0.20

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyapproxmc-4.1.24.tar.gz (457.5 kB view details)

Uploaded Source

Built Distributions

pyapproxmc-4.1.24-pp310-pypy310_pp73-win_amd64.whl (472.1 kB view details)

Uploaded PyPy Windows x86-64

pyapproxmc-4.1.24-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (736.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (709.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyapproxmc-4.1.24-pp39-pypy39_pp73-win_amd64.whl (472.1 kB view details)

Uploaded PyPy Windows x86-64

pyapproxmc-4.1.24-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (736.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (709.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyapproxmc-4.1.24-pp38-pypy38_pp73-win_amd64.whl (472.0 kB view details)

Uploaded PyPy Windows x86-64

pyapproxmc-4.1.24-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (736.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (709.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyapproxmc-4.1.24-pp37-pypy37_pp73-win_amd64.whl (472.0 kB view details)

Uploaded PyPy Windows x86-64

pyapproxmc-4.1.24-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (752.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (709.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyapproxmc-4.1.24-cp312-cp312-win_amd64.whl (472.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyapproxmc-4.1.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-cp312-cp312-macosx_10_9_x86_64.whl (794.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyapproxmc-4.1.24-cp311-cp311-win_amd64.whl (471.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyapproxmc-4.1.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-cp311-cp311-macosx_10_9_x86_64.whl (794.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyapproxmc-4.1.24-cp310-cp310-win_amd64.whl (471.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyapproxmc-4.1.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-cp310-cp310-macosx_10_9_x86_64.whl (794.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyapproxmc-4.1.24-cp39-cp39-win_amd64.whl (471.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyapproxmc-4.1.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-cp39-cp39-macosx_10_9_x86_64.whl (794.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyapproxmc-4.1.24-cp38-cp38-win_amd64.whl (471.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyapproxmc-4.1.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-cp38-cp38-macosx_10_9_x86_64.whl (794.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyapproxmc-4.1.24-cp37-cp37m-win_amd64.whl (472.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyapproxmc-4.1.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyapproxmc-4.1.24-cp37-cp37m-macosx_10_9_x86_64.whl (794.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyapproxmc-4.1.24.tar.gz.

File metadata

  • Download URL: pyapproxmc-4.1.24.tar.gz
  • Upload date:
  • Size: 457.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for pyapproxmc-4.1.24.tar.gz
Algorithm Hash digest
SHA256 e592aeaf614c2a9d8d5b23b84e007c60ceb85c5cb42be035bb1ab0fa75551e44
MD5 99059a5e9f6e66e57195edcbbb106246
BLAKE2b-256 5c36b4ce5193672c31af53bcdc35361ec59c8ba2db76cabe41bd96e5b11f1bfb

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ad43716bf0b92ac3f69574bfe1c8bda410e22683014cfee760132288cf41d9ab
MD5 43ce1ae40479cf10dffbe746e754dee3
BLAKE2b-256 62f4a4993a3f6fceabf87accc9a9d59f8937762171872a42c7b4c108ee64e325

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d3e6f9de6d5a6d3b72d545074705b674faed7a8f08002f2776f6aeeba2897fd
MD5 6e9e9efd0870059323ca30a21d68c640
BLAKE2b-256 801ae2b30f7f513af4588ed60f1d50894529638cd4e0141e145a87c8281d6339

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46aa92bc9d7e6144955e8aaff94c3128434fa2ea8acf134fe4b9bcfa535b5d33
MD5 924b79b2c5cc6e90ccfe400c2529d726
BLAKE2b-256 aa4496113db47a81ebb4fdeddb5a3a09eced87d617a1366eba2a107f3088ba7e

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8716ddb427f5ba09dd1d7f33394eaf20150ed9047c7e006f4eaabf623233f243
MD5 da03a57507cabc21aac6d965f2c6e691
BLAKE2b-256 4ddc26cfacd41e16ce1f38f1abd62132f478d231b9d7ea931190ad5e172a2688

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c9f142a642dd6c7f8ed08565d9eba88cf0f63d9bdf9d9c2940cb67ad06bd70f
MD5 df06549b960d8dc1e9d95915c639a7c2
BLAKE2b-256 73f8a5db1e6c1c433e6fd6415067027d8806710993daa8d61a36cb8bc16e6e23

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2309f7fa62bc0c19b64064435d8e8ac5e9919fbcba841884a9e0204f52edce15
MD5 08bd58b815c42e84267638800e5c2f5d
BLAKE2b-256 1181f50ee6403060acfdb348b7a19178d53e096bcd6ac5315e80723983b606ac

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 117f5d025ec7bec25b4ea4da08658e7f9220883683632ccb7949bde76dd03203
MD5 a550d816be2edb95451d33a73c9b67fc
BLAKE2b-256 ec6deae55a7b3406f2617a19ab7791fbc3046ec4868298d502046c25c96beeff

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b69c3a82d1ca71d326da8d4e6402f667ab33f92262615b29baccc155f1c44ea9
MD5 b531c09b71c36fc23b0bd21efc0fbf6b
BLAKE2b-256 3cbc7a01ccb7afc38cc4ea6499d76fbd9a8a66690692f1a65008e9e3258debc4

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c22b615d0809746e3b6dcac8e54b88b6464d9dbe494d6c5bfa0857d30a32f74
MD5 0b15f8bb5dcd1bed07aa91daacdca3bc
BLAKE2b-256 216916b022e888574c4da786a7de5f33978f0ea05d6fae48618fc9919bfee9d3

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 73e65bc0490f2a070ce4cf2f0e253f6a0b5a3e84bd01c7dd2eda1663a6a44d96
MD5 7ffeea1b3b5e3acbca5939c5b31639f2
BLAKE2b-256 d2aaab543a30ed797b2cb8b8c19915ef12329425a583866ef7b742d00ddfb0ee

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d48bcfbcb0f3abbd78eb5282f7bb6d36e9dbcf413a3491c466c64669d1036bba
MD5 b33a46e8da67f0074c8aff92d5d663cc
BLAKE2b-256 7fead5ed868bc05ad782e30675c318f1fe71ea5aa324f17a14d8ebb32465f7c7

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 977a9011998e97e3c84846310c11a00bfb43d26d2e81972d06a2406d200bf103
MD5 5480ce180a22e5970682025732ceb04d
BLAKE2b-256 efd639251ed51330a746a9d868da7759eeae833912fb932fb24b8dfbd7c22401

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dce11f98ed0a6bc61f1e918472428df4e228362fb0afe905d6da662639fd65a6
MD5 0c0d54d97581c2cc8b584d5ef42646c0
BLAKE2b-256 148d26f3592cc8d29cbaa47d919c7af39b7f50ae15d8643a758a04c6042f7da8

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a211bfd8deed3b309a90b60ee0e8885dd1ee336766ef3f7ebc2a11bd2ecc63f5
MD5 fcaa7d1c9d2156c600ecb8dc157afd93
BLAKE2b-256 dae755768e0a2068f69b58884bf66ddf53ea2fb00f4e613eda9d80f360ebe200

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a771d645fea33dd4dfb4977bb342f8dd5f4fcb5a74ec0f9b715241b5bd13fc8
MD5 da9064bef513e471f01282c919612a85
BLAKE2b-256 05b2ecdf4a658ee5a472449bb22811d94b49d293406a39824db5fa12cde69576

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c9c2dcd14151ebb4d9e46ee18e62f6ebcc01587d137722de22e42334ce3d8df8
MD5 97baa0c4caf80a8190c38b1f5d90db6d
BLAKE2b-256 3825fe718172a321eef4cc69f5e6cf8731bc2ff74ee2ea2943f683cbddb54051

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f284069e098c316d749bd5508ca4c10f96dbacc366df74d99a45dc9d0e1656b
MD5 d0f6889b2e3dce4b6f2450ab17dda02c
BLAKE2b-256 d4719cdd17a27b13b8937a4acb34f8ca14a74012f87ac5da692f2a2077500462

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8185910c8b7b34a25a0addd0db8ea45ebd4a2c3bebd4bbd514f4da89f668639
MD5 208e3145507684b9eabda6a29b5acb62
BLAKE2b-256 e8f1164915c776564954aa17eef6bd8601f1e8d966e22e0bf0643d94be38e84a

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bf98fd64a407668969de5918f9e315c35a6b6638c9c595bd9ccb966f1e41bd0c
MD5 8462f94df78ac21082df871228107a5e
BLAKE2b-256 48c76e8c00423ec9090601ae269b6edce2e7d924ed58d56722805ab4ed80bbcd

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2f335e12c2329a05df415c38710f64805abbfcc9b785cc3189fb187898044d6
MD5 09d3ee267f3aa18d71fe334daab681d4
BLAKE2b-256 4ec4a3e06b0efac16a03b8dfda97cd08a266ad7dfe1783ea091523bbb0177bd3

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 574c8baafcf77888b6ca2ff8efc3b6b64ba656a250950c6cbc0842e2f93f8e5c
MD5 7e512845d4647acc701d458db0df9ea8
BLAKE2b-256 6e08e2dd80a76fff64f18ea8ee6daceb9f20b44d08300fe8543db5d43468e5c5

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 98b5108cff98d6ec3e3eb2df9aebdaba475c30060a760e50fbbcd69c24c23412
MD5 7e86c61f577b70969cff48d5e201988b
BLAKE2b-256 ff38f9d59d002e34aec3a13a8ab900612e4fe6dbaf4a2515d0d98e9ac31a1b12

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 535bd12447fd67e41ea846d8e7c12f85619a4bf1c038602720d798c15b2d092d
MD5 2a59263ada2008c6fa384e7c574583a9
BLAKE2b-256 b7a1a1159964c04fb9f60675f076bdcb45bc21511bede22b28b314f0907ac53b

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f89205eed370f4a1cf582151f372ab2820954cebb025977cdceb95bb621376f6
MD5 0ec9f00ffd4922e84b6a751fbee11e17
BLAKE2b-256 50743eb3220b57b6a9e3ba75980b4a6b37949ae9828d1a478decaf279e494ba7

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e6099ea29daf45d2c2533f078fd6076367561c0eef41581632e6304fd4f14e50
MD5 054acd0d371c49c4383693d66aa67ea1
BLAKE2b-256 0240492dd14f0274bdb26bb104fee81316afdd658912819cfd85816048fd0984

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be19dbdb8c8000d289614b35c0b7bf152ddc2c3836e72481845ff04b634ca78a
MD5 c2e6a363afd86c4c2c48a7c46cd748f9
BLAKE2b-256 9e7a180c44460d37cedad3fb8dc83216f059558db744c12d0ccde2af328087cf

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8aeee65ee3c24345fef2f28bfe7614f96d5be484858e6c2ef79beb0981afb173
MD5 74f6893b6931b9a6caf20d01fe72eda2
BLAKE2b-256 912adaffe4418413e56d4684b8c6b92afd86e05203f2eee3a6cfbe29836e3718

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bde1e0dfc5575ad4d2c117b285a093880dec7d60cb3b4b0d9fb4c78ad94def54
MD5 1ce08078d9ef1c4ec364e6ea214a2370
BLAKE2b-256 e04c1de482aa296334ff846e79b9e07bd53ad3f5b3c5300e2b05b25a8a4db4ba

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c7fb5af53c42d6a170eedd9a05fc8a90ea19b9ae449ce43c646be4fbe0933ef
MD5 54c1caa57a9393154cfffdcd9602bfce
BLAKE2b-256 3e66bac389a9cd1852a6f662926ce00e39089ad62fa4a442c6502b3d81ef84ca

See more details on using hashes here.

File details

Details for the file pyapproxmc-4.1.24-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyapproxmc-4.1.24-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 785820b731e84d3140d224071edbb6115cf77bdd63ed9e4f3a7a1ef9f67ef2b1
MD5 f24dff7be98015761e89f8be78cd7727
BLAKE2b-256 e25ada9243afc101333149f18d262b6eacd09baaca5d8dce63effe82d0e6371a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page