Skip to main content

pyaro py-aerocom reader objects

Project description

pyaro - Airquality Reader-interface for Observations

pyaro-logo

The library that solves the mystery of reading airquality measurement databases. (Pronounciation as in French: Poirot)

About

Pyaro is an interface which uses a simple access pattern to different air-pollution databases. The goal of pyro was threefold.

  1. A simple interface for different types of air-pollution databases
  2. A programatic interface to these databases easily usable by large applications like PyAerocom
  3. Easy extension for air-pollution database providers or programmers giving the users (1. or 2.) direct access their databases without the need of a new API.

A few existing implementations of pyaro can be found at pyaro-readers.

Installation

python -m pip install 'pyaro@git+https://github.com/metno/pyaro.git'

This will install pyaro and all its dependencies (numpy).

Usage

import pyaro.timeseries
TEST_FILE = "csvReader_testdata.csv"
engines = pyaro.list_timeseries_engines()
# {'csv_timeseries': <pyaro.csvreader.CSVTimeseriesReader.CSVTimeseriesEngine object at 0x7fcbe67eab00>}
print(engines['csv_timeseries'].args)
# ('filename', 'columns', 'variable_units', 'csvreader_kwargs', 'filters')
print(pyaro.timeseries.filters.list)
# immutable dict of all filter-names to filter-classes
print(engines['csv_timeseries'].supported_filters())
# list of filter-classes supported by this reader
print(pyaro.timeseries.filters.list)

with engines['csv_timeseries'].open(
    filename=TEST_FILE,
    filters={'countries': {include=['NO']}}
    ) as ts:
    for var in ts.variables():
        # stations
        ts.data(var).stations
        # start_times
        ts.data(var).start_times
        # stop_times
        ts.data(var).end_times
        # latitudes
        ts.data(var).latitudes
        # longitudes
        ts.data(var).longitudes
        # altitudes
        ts.data(var).altitudes
        # values
        ts.data(var).values
        # flags
        ts.data(var).flags


        # if pandas is installed, data can be converted to a pandas Dataframe
        df = pyaro.timeseries_data_to_pd(data)

Supported readers

  • csv_timeseries Reader for all tables readable with the python csv module. The reader supports reading from a single local file, with csv-parameters added on the command-line.

Usage - csv_timeseries

import pyaro.timeseries
TEST_FILE = "csvReader_testdata.csv"
engine = pyaro.list_timeseries_engines()["csv_timeseries"]
ts = engine.open(TEST_FILE, filters=[], fill_country_flag=False)
print(ts.variables())
# stations
ts.data('SOx').stations
# start_times
ts.data('SOx').start_times
# stop_times
ts.data('SOx'.end_times
# latitudes
ts.data('SOx').latitudes
# longitudes
ts.data('SOx').longitudes
# altitudes
ts.data('SOx').altitudes
# values
ts.data('SOx').values

COPYRIGHT

Copyright (C) 2023 Heiko Klein, Daniel Heinesen, Norwegian Meteorological Institute

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, see https://www.gnu.org/licenses/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyaro-0.0.13.tar.gz (35.3 kB view details)

Uploaded Source

Built Distribution

pyaro-0.0.13-py3-none-any.whl (34.4 kB view details)

Uploaded Python 3

File details

Details for the file pyaro-0.0.13.tar.gz.

File metadata

  • Download URL: pyaro-0.0.13.tar.gz
  • Upload date:
  • Size: 35.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyaro-0.0.13.tar.gz
Algorithm Hash digest
SHA256 d2ed52ac457a1207c21faf10f6505646391bc73cf1fac8a4d5ce5c252dc92380
MD5 7388fd8612d90a62e2684b8bea7923e6
BLAKE2b-256 17f1dd18cb4cf3a134d693eb9e026fe36a2eac8cab03193380d861a120a76f25

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyaro-0.0.13.tar.gz:

Publisher: publish.yml on metno/pyaro

Attestations:

File details

Details for the file pyaro-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: pyaro-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyaro-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 8c5acd3ea8703c5e8e1d7b25175c03167a30a1f40e0fdb94bec7e535a78ee52a
MD5 ac46fb85ff325c295fefafb540bacca7
BLAKE2b-256 ef2d4289fbff15533968ab7046b77a54e3eab457f7721f66aa23ebf423f29fd4

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyaro-0.0.13-py3-none-any.whl:

Publisher: publish.yml on metno/pyaro

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page