Skip to main content

Use pyarrow with Azure Data Lake gen2

Project description

pyarrowfs-adlgen2

pyarrowfs-adlgen2 is an implementation of a pyarrow filesystem for Azure Data Lake Gen2.

It allows you to use pyarrow and pandas to read parquet datasets directly from Azure without the need to copy files to local storage first.

Installation

pip install pyarrowfs-adlgen2

Reading datasets

Example usage with pandas dataframe:

import azure.identity
import pandas as pd
import pyarrow.fs
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.AccountHandler.from_account_name(
    'YOUR_ACCOUNT_NAME', azure.identity.DefaultAzureCredential())
fs = pyarrow.fs.PyFileSystem(handler)
df = pd.read_parquet('container/dataset.parq', filesystem=fs)

Example usage with arrow tables:

import azure.identity
import pyarrow.dataset
import pyarrow.fs
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.AccountHandler.from_account_name(
    'YOUR_ACCOUNT_NAME', azure.identity.DefaultAzureCredential())
fs = pyarrow.fs.PyFileSystem(handler)
ds = pyarrow.dataset.dataset('container/dataset.parq', filesystem=fs)
table = ds.to_table()

Writing datasets

As of pyarrow version 1.0.1, pyarrow.parquet.ParquetWriter does not support pyarrow.fs.PyFileSystem, but data can be written to open files:

with fs.open_output_stream('container/out.parq') as out:
    df.to_parquet(out)

Or with arrow tables:

import pyarrow.parquet

with fs.open_output_stream('container/out.parq') as out:
    pyarrow.parquet.write_table(table, out)

Accessing only a single container/file-system

If you do not want, or can't access the whole storage account as a single filesystem, you can use pyarrowfs_adlgen2.FilesystemHandler to view a single file system within an account:

import azure.identity
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.FilesystemHandler.from_account_name(
   "STORAGE_ACCOUNT", "FS_NAME", azure.identity.DefaultAzureCredential())

All access is done through the file system within the storage account.

Running tests

To run the integration tests, you need:

  • Azure Storage Account V2 with hierarchial namespace enabled (Data Lake gen2 account)
  • To configure azure login (f. ex. use $ az login or set up environment variables, see azure.identity.DefaultAzureCredential)
  • Install pytest, f. ex. pip install pytest

NB! All data in the storage account is deleted during testing, USE AN EMPTY ACCOUNT

AZUREARROWFS_TEST_ACT=thestorageaccount pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyarrowfs-adlgen2-0.1.2.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

pyarrowfs_adlgen2-0.1.2-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file pyarrowfs-adlgen2-0.1.2.tar.gz.

File metadata

  • Download URL: pyarrowfs-adlgen2-0.1.2.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pyarrowfs-adlgen2-0.1.2.tar.gz
Algorithm Hash digest
SHA256 fb3a77fe3729873e1720a4ecbd35d186993ce4c8e9d6b3f01f7312098937cabb
MD5 317971d6c83b82fd05fcbaf5e9a92add
BLAKE2b-256 6aaebd013dcd4b9098e8521d091d58e54b0609033d9738cf732b6bf5cdb9c3fd

See more details on using hashes here.

Provenance

File details

Details for the file pyarrowfs_adlgen2-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: pyarrowfs_adlgen2-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pyarrowfs_adlgen2-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5944824dcab6d13548e076a19ed21384344fcc4368e9d794ec40ab02a7e40716
MD5 2c9bbfa2b207d14cb0af696ebaa940f2
BLAKE2b-256 5d5539c7fdb4f8df0add83d2799d145939b4260a0fbd47c2f0247da97872b12b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page