Skip to main content

Use pyarrow with Azure Data Lake gen2

Project description

pyarrowfs-adlgen2

pyarrowfs-adlgen2 is an implementation of a pyarrow filesystem for Azure Data Lake Gen2.

It allows you to use pyarrow and pandas to read parquet datasets directly from Azure without the need to copy files to local storage first.

Installation

pip install pyarrowfs-adlgen2

Reading datasets

Example usage with pandas dataframe:

import azure.identity
import pandas as pd
import pyarrow.fs
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.AccountHandler.from_account_name(
    'YOUR_ACCOUNT_NAME', azure.identity.DefaultAzureCredential())
fs = pyarrow.fs.PyFileSystem(handler)
df = pd.read_parquet('container/dataset.parq', filesystem=fs)

Example usage with arrow tables:

import azure.identity
import pyarrow.dataset
import pyarrow.fs
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.AccountHandler.from_account_name(
    'YOUR_ACCOUNT_NAME', azure.identity.DefaultAzureCredential())
fs = pyarrow.fs.PyFileSystem(handler)
ds = pyarrow.dataset.dataset('container/dataset.parq', filesystem=fs)
table = ds.to_table()

Configuring timeouts

Timeouts are passed to azure-storage-file-datalake SDK methods. The timeout unit is in seconds.

import azure.identity
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.AccountHandler.from_account_name(
    'YOUR_ACCOUNT_NAME',
    azure.identity.DefaultAzureCredential(),
    timeouts=pyarrowfs_adlgen2.Timeouts(file_system_timeout=10)
)
# or mutate it:
handler.timeouts.file_client_timeout = 20

Writing datasets

With pyarrow version 3 or greater, you can write datasets from arrow tables:

import pyarrow as pa
import pyarrow.dataset

pyarrow.dataset.write_dataset(
    table,
    'name.pq',
    format='parquet',
    partitioning=pyarrow.dataset.partitioning(
        schema=pyarrow.schema([('year', pa.int32())]), flavor='hive'
    ),
    filesystem=pyarrow.fs.PyFileSystem(handler)
)

With earlier versions, files must be opened/written one at a time:

As of pyarrow version 1.0.1, pyarrow.parquet.ParquetWriter does not support pyarrow.fs.PyFileSystem, but data can be written to open files:

with fs.open_output_stream('container/out.parq') as out:
    df.to_parquet(out)

Or with arrow tables:

import pyarrow.parquet

with fs.open_output_stream('container/out.parq') as out:
    pyarrow.parquet.write_table(table, out)

Accessing only a single container/file-system

If you do not want, or can't access the whole storage account as a single filesystem, you can use pyarrowfs_adlgen2.FilesystemHandler to view a single file system within an account:

import azure.identity
import pyarrowfs_adlgen2

handler = pyarrowfs_adlgen2.FilesystemHandler.from_account_name(
   "STORAGE_ACCOUNT", "FS_NAME", azure.identity.DefaultAzureCredential())

All access is done through the file system within the storage account.

Set http headers for files for pyarrow >= 5

You can set headers for any output files by using the metadata argument to handler.open_output_stream:

import pyarrowfs_adlgen2

fs = pyarrowfs_adlgen2.AccountHandler.from_account_name("theaccount").to_fs()
metadata = {"content_type": "application/json"}
with fs.open_output_stream("container/data.json", metadata) as out:
    out.write("{}")

Note that the spelling is different than you might expect! For a list of valid keys, see ContentSettings.

You can do this for pyarrow >= 5 when using pyarrow.fs.PyFileSystem, and for any pyarrow if using the handlers from pyarrowfs_adlgen2 directly.

Running tests

To run the integration tests, you need:

  • Azure Storage Account V2 with hierarchial namespace enabled (Data Lake gen2 account)
  • To configure azure login (f. ex. use $ az login or set up environment variables, see azure.identity.DefaultAzureCredential)
  • Install pytest, f. ex. pip install pytest

NB! All data in the storage account is deleted during testing, USE AN EMPTY ACCOUNT

AZUREARROWFS_TEST_ACT=thestorageaccount pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyarrowfs-adlgen2-0.2.4.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

pyarrowfs_adlgen2-0.2.4-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file pyarrowfs-adlgen2-0.2.4.tar.gz.

File metadata

  • Download URL: pyarrowfs-adlgen2-0.2.4.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyarrowfs-adlgen2-0.2.4.tar.gz
Algorithm Hash digest
SHA256 c64d49d0d760e89a7d49b3fcf039ad8c76be5849458e8ea04e134987433bde10
MD5 9267467b777cdf966798ed2c45e72376
BLAKE2b-256 d5870b46d3f3781591604d54a9d15771f2a1c5133291cc1a177de3d7e9289b42

See more details on using hashes here.

Provenance

File details

Details for the file pyarrowfs_adlgen2-0.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pyarrowfs_adlgen2-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 43585bc58c05fcf640ad56b245f0962d03222d4d7772139d9a27df898a44f2ee
MD5 34d29f78e63a4c06f7e43b958e33b7e6
BLAKE2b-256 17c4c050c5aaa0bdcaf3a46c9838f9ab1f0d688fa26fd66f674cf66792c35aec

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page