Skip to main content

Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver

Project description

https://img.shields.io/pypi/pyversions/PyAthenaJDBC.svg https://circleci.com/gh/laughingman7743/PyAthenaJDBC.svg?style=shield https://codecov.io/gh/laughingman7743/PyAthenaJDBC/branch/master/graph/badge.svg https://img.shields.io/pypi/l/PyAthenaJDBC.svg

PyAthenaJDBC

PyAthenaJDBC is a python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver.

Requirements

  • Python

    • CPython 2.6, 2,7, 3,4, 3.5

  • Java

    • Java 7+

Installation

$ pip install PyAthenaJDBC

Usage

Basic usage:

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM one_row
        """)
        print(cursor.description)
        print(cursor.fetchall())
finally:
    conn.close()

Cursor iteration:

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows LIMIT 10
        """)
        for row in cursor:
            print(row)
finally:
    conn.close()

Query with parameter:

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT col_int FROM one_row_complex where col_int = {0}
        """, 2147483647)
        print(cursor.fetchall())

        cursor.execute("""
        SELECT col_string FROM one_row_complex where col_string = {param}
        """, param='a string')
        print(cursor.fetchall())
finally:
    conn.close()

Minimal example for Pandas DataFrame:

from pyathenajdbc import connect
import pandas as pd

conn = connect(access_key=<access key>,
               secret_key=<secret key>,
               s3_staging_dir=<staging dir>,
               region_name=<region name>,
               jvm_path=<jvm path>) # optional, as used by jpype
df = pd.read_sql("SELECT * FROM <table name> LIMIT 10", conn)

As Pandas DataFrame:

import contextlib
from pyathenajdbc import connect
from pyathenajdbc.util import as_pandas

with contextlib.closing(
        connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/')) as conn:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows
        """)
        df = as_pandas(cursor)
print(df.describe())

Credential

Support AWS CLI credentials configuration.

Credential Files

~/.aws/credentials

[default]
aws_access_key_id=YOUR_ACCESS_KEY_ID
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY

~/.aws/config

[default]
region=us-west-2
output=json

Environment variables

$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2

Additional environment variable:

$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/

Testing

Depends on the following environment variables:

$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/

Run test:

$ pip install pytest awscli
$ scripts/upload_test_data.sh
$ py.test
$ scripts/delete_test_data.sh

Run test multiple Python versions:

$ pip install tox awscli
$ scripts/upload_test_data.sh
$ pyenv local 2.6.9 2.7.12 3.4.5 3.5.2
$ tox
$ scripts/delete_test_data.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyAthenaJDBC-1.0.5.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

PyAthenaJDBC-1.0.5-py2.py3-none-any.whl (8.5 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file PyAthenaJDBC-1.0.5.tar.gz.

File metadata

File hashes

Hashes for PyAthenaJDBC-1.0.5.tar.gz
Algorithm Hash digest
SHA256 56ddd83f816bf375ddd080fd974596a51968cb0d5fe53c94a66e5fe125d75583
MD5 c010fcc01df0a313c15687f144b8de45
BLAKE2b-256 6c22f6824fcfdd7def639d205ae1486c176e7345fc3a3065285645eb783c4470

See more details on using hashes here.

Provenance

File details

Details for the file PyAthenaJDBC-1.0.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for PyAthenaJDBC-1.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 96b15fe5ae029c3e7c0be8c25a7e1f5a12040c2c975c7f40f6e9afa80c9e5cd6
MD5 cedfd3c9f91fa24c586cf5c15ee52ff1
BLAKE2b-256 0e2ed9d2e088bf8d2a3061ea70524d3e30c9561a249f56ba38ff91ec24e9db72

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page