Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver
Project description
PyAthenaJDBC
PyAthenaJDBC is a Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver.
Requirements
Python
CPython 2.6, 2,7, 3,4, 3.5
Java
Java >= 8
Installation
$ pip install PyAthenaJDBC
Extra packages:
Package |
Install command |
Version |
---|---|---|
Pandas |
pip install PyAthenaJDBC[Pandas] |
>=0.19.0 |
SQLAlchemy |
pip install PyAthenaJDBC[SQLAlchemy] |
>=1.0.0 |
Usage
Basic usage
from pyathenajdbc import connect
conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
region_name='us-west-2')
try:
with conn.cursor() as cursor:
cursor.execute("""
SELECT * FROM one_row
""")
print(cursor.description)
print(cursor.fetchall())
finally:
conn.close()
Cursor iteration
from pyathenajdbc import connect
conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
region_name='us-west-2')
try:
with conn.cursor() as cursor:
cursor.execute("""
SELECT * FROM many_rows LIMIT 10
""")
for row in cursor:
print(row)
finally:
conn.close()
Query with parameter
Supported DB API paramstyle is only PyFormat. PyFormat only supports named placeholders with old % operator style and parameters specify dictionary format.
from pyathenajdbc import connect
conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
region_name='us-west-2')
try:
with conn.cursor() as cursor:
cursor.execute("""
SELECT col_string FROM one_row_complex
WHERE col_string = %(param)s
""", {'param': 'a string'})
print(cursor.fetchall())
finally:
conn.close()
if % character is contained in your query, it must be escaped with %% like the following:
SELECT col_string FROM one_row_complex
WHERE col_string = %(param)s OR col_string LIKE 'a%%'
SQLAlchemy
Install SQLAlchemy with pip install SQLAlchemy>=1.0.0 or pip install PyAthenaJDBC[SQLAlchemy]. Supported SQLAlchemy is 1.0.0 or higher.
import contextlib
from urllib.parse import quote_plus # PY2: from urllib import quote_plus
from sqlalchemy.engine import create_engine
from sqlalchemy.sql.expression import select
from sqlalchemy.sql.functions import func
from sqlalchemy.sql.schema import Table, MetaData
conn_str = 'awsathena+jdbc://{access_key}:{secret_key}@athena.{region_name}.amazonaws.com:443/'\
'{schema_name}?s3_staging_dir={s3_staging_dir}'
engine = create_engine(conn_str.format(
access_key=quote_plus('YOUR_ACCESS_KEY'),
secret_key=quote_plus('YOUR_SECRET_ACCESS_KEY'),
region_name='us-west-2',
schema_name='default',
s3_staging_dir=quote_plus('s3://YOUR_S3_BUCKET/path/to/')))
try:
with contextlib.closing(engine.connect()) as conn:
many_rows = Table('many_rows', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=many_rows).scalar())
finally:
engine.dispose()
The connection string has the following format:
awsathena+jdbc://{access_key}:{secret_key}@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&driver_path={driver_path}&...
NOTE: s3_staging_dir requires quote. If access_key, secret_key and other parameter contain special characters, quote is also required.
Pandas
Minimal example for Pandas DataFrame:
from pyathenajdbc import connect
import pandas as pd
conn = connect(access_key='YOUR_ACCESS_KEY_ID',
secret_key='YOUR_SECRET_ACCESS_KEY',
s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
region_name='us-west-2',
jvm_path='/path/to/jvm') # optional, as used by JPype
df = pd.read_sql("SELECT * FROM many_rows LIMIT 10", conn)
As Pandas DataFrame:
import contextlib
from pyathenajdbc import connect
from pyathenajdbc.util import as_pandas
with contextlib.closing(
connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/'
region_name='us-west-2'))) as conn:
with conn.cursor() as cursor:
cursor.execute("""
SELECT * FROM many_rows
""")
df = as_pandas(cursor)
print(df.describe())
Examples
Redash query runner example
Credential
Support AWS CLI credentials, Instance profile credentials and Properties file credentials.
Credential Files
~/.aws/credentials
[default]
aws_access_key_id=YOUR_ACCESS_KEY_ID
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY
~/.aws/config
[default]
region=us-west-2
output=json
Environment variables
$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2
Additional environment variable:
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/
Instance profile credentials
If you create an EC2 instance profile with a policy like the following and attach it to the EC2 instance, PyAthenaJDBC accesses Amazon Athena using temporary credentials.
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"athena:*"
],
"Resource": [
"*"
]
},
{
"Effect": "Allow",
"Action": [
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:ListBucketMultipartUploads",
"s3:ListMultipartUploadParts",
"s3:AbortMultipartUpload",
"s3:CreateBucket",
"s3:PutObject"
],
"Resource": [
"arn:aws:s3:::aws-athena-query-results-*",
"arn:aws:s3:::YOUR_S3_STAGING_DIR",
"arn:aws:s3:::YOUR_S3_AWESOME_LOG_DATA"
]
}
]
}
In the connect method or connection object, you can connect by specifying at least s3_staging_dir and region_name. It is not necessary to specify access_key and secret_key.
from pyathenajdbc import connect
conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
region_name='us-west-2')
Terraform Instance profile example:
Properties file credentials
If you create a property file of the following format and specify the path with credential_file of the connect method or connection object, PyAthenaJDBC accesses Amazon Athena using the properties file.
accessKeyId:YOUR_ACCESS_KEY_ID
secretKey:YOUR_SECRET_ACCESS_KEY
from pyathenajdbc import connect
conn = connect(credential_file='/path/to/AWSCredentials.properties',
s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
region_name='us-west-2')
Testing
Depends on the AWS CLI credentials and the following environment variables:
~/.aws/credentials
[default]
aws_access_key_id=YOUR_ACCESS_KEY_ID
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY
Environment variables
$ export AWS_DEFAULT_REGION=us-west-2
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/
Run test
$ pip install pytest awscli
$ scripts/upload_test_data.sh
$ py.test
$ scripts/delete_test_data.sh
Run test multiple Python versions
$ pip install tox awscli
$ scripts/upload_test_data.sh
$ pyenv local 2.6.9 2.7.12 3.4.5 3.5.2
$ tox
$ scripts/delete_test_data.sh
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file PyAthenaJDBC-1.1.1.tar.gz
.
File metadata
- Download URL: PyAthenaJDBC-1.1.1.tar.gz
- Upload date:
- Size: 15.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78252f6f953d62dcbcd77a1ae966823899262d2318558f6c2932624cc3be7795 |
|
MD5 | 5d5a4701b364da24f3ade8fa437a411f |
|
BLAKE2b-256 | 3018476ec77cf3b03ed50e82506ff201752cb85dc71e3542d7d04b470aa66330 |
Provenance
File details
Details for the file PyAthenaJDBC-1.1.1-py2.py3-none-any.whl
.
File metadata
- Download URL: PyAthenaJDBC-1.1.1-py2.py3-none-any.whl
- Upload date:
- Size: 17.9 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2321ee16c17102793832f9ebc49dedbfadc81ad9c0557f7b77cdbf1bd227b0db |
|
MD5 | 476404a2b786ee0177ad057a700e8f09 |
|
BLAKE2b-256 | 896fef175144550d786f667d01378f51fac51b0a5ac7855dc15e1a298f1fa36d |