Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-19.0-cp37-cp37m-macosx_10_10_x86_64.whl (244.6 kB view details)

Uploaded CPython 3.7m macOS 10.10+ x86-64

pyats.datastructures-19.0-cp36-cp36m-macosx_10_10_x86_64.whl (248.3 kB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

pyats.datastructures-19.0-cp35-cp35m-macosx_10_10_x86_64.whl (239.5 kB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

pyats.datastructures-19.0-cp34-cp34m-macosx_10_10_x86_64.whl (236.3 kB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

File details

Details for the file pyats.datastructures-19.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d493e4370f22bb01633c0f92565822094f299c6be8f866330ebf5326952aa3d
MD5 04962a4a8b3c84a6b7fb205560cd579f
BLAKE2b-256 f72a6595aca96c1d0232458b1b3a333963897d96ec9c2545c213668cb28d25ae

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp37-cp37m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.0-cp37-cp37m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 244.6 kB
  • Tags: CPython 3.7m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-19.0-cp37-cp37m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f9fb59a7e77c11723d67154c59905fb340e5387cb02b15fd837028c659806839
MD5 93dfe5a79d67ba77d38a5bbbd731e405
BLAKE2b-256 f06bc56eceb4344a3481bfaf060ddfa7b4425e3766bb675582453bc7be33f75e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 27921ae99b1f15f5037ac57f05d380745f3247fb64ec3d4f621efe0233e28523
MD5 649e14bd9f799968478252150fc90a82
BLAKE2b-256 3a8fbba0f2f639a4fdafd2bb8f5f6aa61ee4ea9b1894d25158a13588c22ee8fe

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.0-cp36-cp36m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 248.3 kB
  • Tags: CPython 3.6m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-19.0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 49fe26c20f5fa6f4883f8c399a42c5ce91096411cabfbfa1966e4776cd5690af
MD5 d6616654033a5b06c115b85b01f130ba
BLAKE2b-256 a03c4556c20f5acbee2d515228e10ff6f3c0e4f66b0fb6031c7e049e63deb6dd

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aa68555bfd6b1c98e6d1ea63a259fd718bd71a54659270f3b3a588504671f7bc
MD5 8202b19219f49f716742270ef0a82db3
BLAKE2b-256 440c3140a5b29deefb19efc6857dc60b00a8ecc3fbd560928c53a43812193a3c

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.0-cp35-cp35m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 239.5 kB
  • Tags: CPython 3.5m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-19.0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 dcd7ac15a7c8a0b55f3f2bdbce62c5e4bcb9bf18df251ca1f5683501240d597e
MD5 0b0e792a12ea506bc92d0fbb66af461a
BLAKE2b-256 58f7638533765e9f49de8fff4d2344d2d4e00ff122937195746dae0fb72f7b87

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-19.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 65c1b560f7f735f8ad38df331c2dfc55a0d71290fcd5a0b421336f0f381be686
MD5 12c6e4eb57d5c1d66e7b82f1d32b7549
BLAKE2b-256 38879adbd91aa31d603e869956ddede869d6f62e4756995eeae686440713533e

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-19.0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-19.0-cp34-cp34m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 236.3 kB
  • Tags: CPython 3.4m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-19.0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 44e97c58948af48ae297b3227bcffd39b42144d947ffcda072f4c40f5928f46d
MD5 48eeda8fb165fb1db5bdd61ae77f1b67
BLAKE2b-256 6268a204f0be3cf1f3ec6aebf3d3b5d79a8971e8d3fc511613b68584332d18b1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page