Skip to main content

pyATS Datastructures: Extended Datastructures for Grownups

Project description

pyATS is an end-to-end testing ecosystem, specializing in data-driven and reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design, pyATS enables developers start with small, simple and linear test cases, and scale towards large, complex and asynchronous test suites.

pyATS is initially developed internally in Cisco, and is now available to the general public starting late 2017 through Cisco DevNet. Visit the pyATS home page at

https://developer.cisco.com/site/pyats/

Datastructures Package

This is a sub-component of pyATS that defines various local, advanced datastructures used throughout pyATS.

Requirements

pyATS currently supports Python 3.4+ on Linux & Mac systems. Windows platforms are not yet supported.

Quick Start

# install pyats as a whole
$ pip install pyats

# to upgrade this package manually
$ pip install --upgrade pyats.datastructures

# to install alpha/beta versions, add --pre
$ pip install --pre pyats.datastructures

For more information on setting up your Python development environment, such as creating virtual environment and installing pip on your system, please refer to Virtual Environment and Packages in Python tutorials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyats.datastructures-5.1.0-cp36-cp36m-macosx_10_10_x86_64.whl (248.3 kB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

pyats.datastructures-5.1.0-cp35-cp35m-macosx_10_10_x86_64.whl (239.5 kB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

pyats.datastructures-5.1.0-cp34-cp34m-macosx_10_10_x86_64.whl (236.3 kB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

File details

Details for the file pyats.datastructures-5.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-5.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7345280e3b9ae624bef2f8155a4450ade333e7a8afad8085fad470b5fe014a69
MD5 23e2b40570886e96c83cbdf82fb93c57
BLAKE2b-256 3beca132363b298de655d90950d684483b8763b528011f55faee81040925171f

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-5.1.0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-5.1.0-cp36-cp36m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 248.3 kB
  • Tags: CPython 3.6m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-5.1.0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 825494a8ccdb7ca6e74eb6d5567a3aef59596cc3a36b8082441d3d544972db08
MD5 43bcd7b295485eb67878be7027308479
BLAKE2b-256 0e86efe9bf73b2277786123c64b594a46d1da95d540f63bbffa9dd19bfeca312

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-5.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-5.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1e98c42d2345b3aa5a8020de9afc9801735204db2c8ef685aed5c355e61ddc63
MD5 c6ad7382940f3a7ceb1a3dac99f1a6a5
BLAKE2b-256 2def24efc84d3dc3108062228c680cfba2754fdce16267eb1918a874e0c9e663

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-5.1.0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-5.1.0-cp35-cp35m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 239.5 kB
  • Tags: CPython 3.5m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-5.1.0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b5e7f5220d2eee2ec477026ac5711f24ee22efd77b60cb6455aec32f13cf2ab3
MD5 7648c92bbdabf011c0556f6ae1443158
BLAKE2b-256 f19656583b582049b096642d2e0417ee737d01c55023e62c1b8a7f819fb844d7

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-5.1.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyats.datastructures-5.1.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5b3cf7c3d1150c69effe778b0f7f7d5d9f97c4a84ba2eeaeb8b17d74c061f522
MD5 0f0ecad54087177a5683314764270f18
BLAKE2b-256 cce4bf04c03e6aeb3dc928440a9c153721d17c1e5d41fa1e15131bc00748dabd

See more details on using hashes here.

Provenance

File details

Details for the file pyats.datastructures-5.1.0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

  • Download URL: pyats.datastructures-5.1.0-cp34-cp34m-macosx_10_10_x86_64.whl
  • Upload date:
  • Size: 236.3 kB
  • Tags: CPython 3.4m, macOS 10.10+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.4.7

File hashes

Hashes for pyats.datastructures-5.1.0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ec68a099835ce002899d14fd3628608c721fe05bcd88da78ec2274a4bc989e69
MD5 8503cfe1f0fa687f2d51c999f1b543a3
BLAKE2b-256 8c6290c57807d260c1a02c395035bf58545d97394ce28de4e023320e70033de8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page