Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.6.2.tar.gz (156.6 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.6.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.6.2-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.6.2-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (957.5 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ i686

pyattimo-0.6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (951.7 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.6.2-cp37-abi3-macosx_11_0_arm64.whl (812.0 kB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.6.2-cp37-abi3-macosx_10_12_x86_64.whl (916.5 kB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.6.2.tar.gz.

File metadata

  • Download URL: pyattimo-0.6.2.tar.gz
  • Upload date:
  • Size: 156.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for pyattimo-0.6.2.tar.gz
Algorithm Hash digest
SHA256 b738118b01de33d4e994ed5da3a5a745929232d60a2389a5ad887928821dfd0e
MD5 24e5cc89ee1f91cd4c340b598c8221c7
BLAKE2b-256 0c9e0f2fbe794dd387e31f90a1e1886a9faa6e54d6117c3a01efcb8d6d72abb2

See more details on using hashes here.

File details

Details for the file pyattimo-0.6.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.6.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5a574fca7c2a0c967da076298751c3cf2e8a7e3d64ee6ff8c0c2baa3b6641d9
MD5 cd6391e3907a12de981e534579a4494a
BLAKE2b-256 9fa7e2faa6b9c3629cb049a3083959a2479e1f11ebb80642bc2192d6ab7263b6

See more details on using hashes here.

File details

Details for the file pyattimo-0.6.2-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.6.2-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 753d154119af005824bdfdfd6eb19db52a7676260f506b5349824a40454c7b0f
MD5 5a929f03a76f6709ddd48a7bea64e902
BLAKE2b-256 a1d328248db81ab4ae3fa58fda52baf6c9ed0526bb6a8e4360cb93e3b862a47c

See more details on using hashes here.

File details

Details for the file pyattimo-0.6.2-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.6.2-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fc3c364537d8a87ed18989e17139faf2f28c918aac81b9dd0a055a4b39f1788d
MD5 72d5697839e522f1c715282f83e8a8aa
BLAKE2b-256 35c8eb558fe1b484fafc0e3ec9397d65c79d1173a148bcc552440b7cd3fa5a21

See more details on using hashes here.

File details

Details for the file pyattimo-0.6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4434c11173af6396e7b2fb78f43912246ebec0f0fb3e316b29f1ed894c636d8d
MD5 e9c0f063f3992250c7760d628b04a051
BLAKE2b-256 d2ab2d15ff43ec910ee7a22d5d1ab973381f74cb22bb0b3849ef82e043c7fba1

See more details on using hashes here.

File details

Details for the file pyattimo-0.6.2-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.6.2-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de9364d13f398312537d5ec58bb8dee2d7552a64aece7204b93710acb65d8834
MD5 c7d9b233caaa205dea1dc954beac8cf4
BLAKE2b-256 28bc1edcd3f9f0e22d15caacf4a3202877c778395c44398afcb822f6b6a42ebd

See more details on using hashes here.

File details

Details for the file pyattimo-0.6.2-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.6.2-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ab8b0e4a1de2a551e18c8f598d25c03428ccb9bf07dcbbb0727447887680d7ff
MD5 ec24456c967aa023fa700bc7a7203a78
BLAKE2b-256 a746561d03ca4b2ff564d13107b59c461353639504d6f38233247d4ae7802f78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page