Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.2.0.tar.gz (148.3 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.2.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.2.0-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ s390x

pyattimo-0.2.0-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.2.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARMv7l

pyattimo-0.2.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.2.0-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.12+ i686

pyattimo-0.2.0-cp37-abi3-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.2.0-cp37-abi3-macosx_10_12_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.2.0.tar.gz.

File metadata

  • Download URL: pyattimo-0.2.0.tar.gz
  • Upload date:
  • Size: 148.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for pyattimo-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d6c4e3255503ae025d7d2b29209ff323ce44d4beb83461fa171939cb7bc6bcbc
MD5 4abdee0b6a4edb8ff3ef0a6f48ee46e7
BLAKE2b-256 5b7930f9076856b33cf4219953d7384f3746c574b77b08b83bc9ca5d6764174d

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd2ed0b388c7e4873a89892eb904576d488eafa23d8ee230988380c50834b5df
MD5 7b79886b6e2070410b2c6391a5b74b5c
BLAKE2b-256 36d1977bc3f34879987458ef304044ea7d97de5802368911143a9cfcb73736cb

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ae85d731b71798d6906f60b4d0641614f42f560f47c4289703ab2b725493f993
MD5 8c714f583af057b7fd5c456c196adb63
BLAKE2b-256 30ac4d66e6f778afe5b4f66da7edf6dc1656bc0066b2d04bbeaeedbaa889c57a

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 48b1cda83c2226cdd0d33947f77e1aa100298d99fc9f8e8736b0b22dfa26d9e3
MD5 377b9fcd6d95f9019927082c29d4d507
BLAKE2b-256 388e6ced3c7cfdbb210fb457b53cf7a4c09b4eba87de983d14abb08277c6a423

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0165d97660b572e411f94ac95012779072758f7f79e492c5e94a722ebfadd91a
MD5 c0210930bff3b519cadd1f74d70f9180
BLAKE2b-256 40a44bd56252c197977e8085fd864e40edf0a6a64069953467cc7f66a2dc1c19

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82a47c9d3bb224111114e03092c7a111a63b51802887b8e6bb27583de61bd3da
MD5 0e8cfb290721ecfa80e5cd32652e92b7
BLAKE2b-256 cf6efd9297db00043c1bbd3c8366f79c6e666c5aaa8e85e9bb43fa05310d0f04

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9518d7bc1eed19b743d313fdbd477b7b2082d64612da9846dbc71243db185876
MD5 758e5d3a92195994017bd6b6ab9cff94
BLAKE2b-256 56d77be387ee831457950592b01a2f25a5062eb8990bb1a24fb2c47544d85e89

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eeff9ec2f593e7aa08dad31cd3eaa64e492f69abba5eebe68d9d2f2f5da2c047
MD5 d1231400f3925d3450b53ab471f936c5
BLAKE2b-256 12a0e02419303def7fd5808b2977f7a95b3c802d043e04d5147d5fdf019d5e23

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.0-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.0-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d55220b7ded448cae4e79281f25f304fc8e42f4c1711f8454b217f28285c02c5
MD5 691801b710bd2b964101eeb4d92c3933
BLAKE2b-256 627890ba08e36bcf027379f18f589649e8354850229e0c2af1537e42ceffe414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page