Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.2.1.tar.gz (148.3 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.2.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.2.1-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ s390x

pyattimo-0.2.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.2.1-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARMv7l

pyattimo-0.2.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.2.1-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (2.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.12+ i686

pyattimo-0.2.1-cp37-abi3-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.2.1-cp37-abi3-macosx_10_12_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.2.1.tar.gz.

File metadata

  • Download URL: pyattimo-0.2.1.tar.gz
  • Upload date:
  • Size: 148.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for pyattimo-0.2.1.tar.gz
Algorithm Hash digest
SHA256 f05f6cf1b05fc4157a4db97be3a6987f2122507e9cc7a73454c5233d9209be04
MD5 3ca040f720a801e9437b9ede25a59ea0
BLAKE2b-256 1d046ca904827e36a5fb6b67a38ed2cb8740315bd0e4f870143b8af2674d5774

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60e4d15fc5e4b1c69897a39d154738ac7cfba54d4992e31e318ad8040ac507b9
MD5 9eb373d5020036b6e987347bd24f29ac
BLAKE2b-256 814ec3015689cef7350b9732050ed6fe1736a668ffdeaf48a2a3c3c3037ed421

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4824620ecdb414a5c259104b77412c3e498f37490e5a896747c7383ccc115c0d
MD5 5779125da4d413d9b88174f3a6d2b4bd
BLAKE2b-256 b828a6f379c5446da119ed957237d8cfaad9519b8a5073d8bdfb7a54e74def63

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c7440b0ae8d1fba6ab6a9e536c64027bcf33bf5fa8547cbfeea7c92b9f7b7fd0
MD5 e7fd969b3a6822b713f3bd6c0a861404
BLAKE2b-256 79f25704dd4fea439ff69a501eb3beb162c67d64682a55434aef7b6883d12f7d

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1f99bcf2cf969ac2b78170db9b532ade2155d8e2d95e3bb6ef560bae8723101a
MD5 57c2ed581df691d72f75d51d3b0104c9
BLAKE2b-256 4527e3e21f4fe2dec6f0a9756e4c1aa1a24029311eec81b7728c325e4c1c7a29

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02d046292002aca092b4064a3152f4004eef4a7b7005d532eb010bf320297a3c
MD5 6473cb2c647a609c93f78ecb8eb78d8d
BLAKE2b-256 a29e18c1d73912d54e14aef50a2f5b4ac6215662a543e445b6b0d6e0ee45df97

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2c7d5ccfff92bd177de60949f77944af27d03c2900955328ce07a0fdd23c4f58
MD5 15d033afc0a62622f70d1caeea2afd55
BLAKE2b-256 4e29a6309572bc49ff571abf9599ce1cc950abe20356b30c09a7fcba71710a0c

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a663240f4197429c1fd9f2c5ed7770e897154d13ff446d277a5c673ad60590f
MD5 d03b25d8b569deffdbab994fcd1c6234
BLAKE2b-256 2f2d3a25c6030e32907c69757d4100b18d0f4c32327ac9610ddd5c85f34cb48a

See more details on using hashes here.

File details

Details for the file pyattimo-0.2.1-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.2.1-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 3707a037e2c8112ed3dbcba521b3babd6088eca818b79168bb2d167c993b7695
MD5 c124f9e4c4c916482ee4d6687349cbff
BLAKE2b-256 40adadb1fa806d574556ea17126be159ce1c957bc7f09f244930db31d6ddb624

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page