Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.3.3.tar.gz (152.9 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.3.3-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.3.3-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.3.3-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.3.3-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.12+ i686

pyattimo-0.3.3-cp37-abi3-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.3.3-cp37-abi3-macosx_10_12_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.3.3.tar.gz.

File metadata

  • Download URL: pyattimo-0.3.3.tar.gz
  • Upload date:
  • Size: 152.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for pyattimo-0.3.3.tar.gz
Algorithm Hash digest
SHA256 d64a2ee5a4a93456ff8573dad698b31b2cd0b8f619ed4abba359e84460b7ca83
MD5 5c7eb0e091632027478572eb9b100186
BLAKE2b-256 f5323741f4b4a489c29dc67fcc9fc230e01f09e494e305770d2de63ff4482a64

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.3-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.3-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c72382eeda2380fba89810d793c2435e890de751a92620de8b50fcc758f99a5e
MD5 77b86de47345d6af83f96d870ca16b6e
BLAKE2b-256 ba7593088b91684f0522c01941857f27dfb4f7f795708bac8f09d139db0bc7a0

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.3-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.3-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4696ca004771ee5883207658ec0cda89d41c11935d6ea33e9f0f87bf5817682c
MD5 31816e61526d6321136a31876379e68a
BLAKE2b-256 aaeb96c4d8ee7e936bbc8c330e798490149a66626d620d2bc04c9cc6d71dd54a

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.3-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.3-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b1785f3e8b50a0fa69e8ff309d377d1f27088a6d1e29fc02affca88d37af72aa
MD5 c38c18592213c1eb3590c13c4f632c63
BLAKE2b-256 760f2bbb69d847231f5cfab325966d84bf58cb31566e11a563bbd7f25b91e8a7

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.3-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.3-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 feccc701da73e2b770a4625d3dd5ea66920beb3ff4efa07bb8a22488631b1fd6
MD5 9b4f79b4ad015596326b0d936b6f0e09
BLAKE2b-256 5b659bd25764029b9d58144e867b3ba20fe6997fd80779a0ff85a0c788868d10

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.3-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.3-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8f31bc092a45024a46b722bc9fc844e128584db4f8f5ecc0bb065f000a19156e
MD5 b0b9bf094d65369f35c485364d1af396
BLAKE2b-256 1e89883b8db8d57c7609d18e60c86bf6ad10424f3493ac5719da8c232dbf42fd

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.3-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.3-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d6dff6fec1b8652bb8e8d4a9661ef996df8a2bfb0f6accb6603f2e392f136b38
MD5 31a5f0f8a8d504d8bc75dcc2c6730f72
BLAKE2b-256 52d369f6c35b1c0393a233297385840b20957830d2b3f0378c6da20997f414f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page