Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.3.4.tar.gz (150.3 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.3.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.3.4-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.3.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.3.4-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.12+ i686

pyattimo-0.3.4-cp37-abi3-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.3.4-cp37-abi3-macosx_10_12_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.3.4.tar.gz.

File metadata

  • Download URL: pyattimo-0.3.4.tar.gz
  • Upload date:
  • Size: 150.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for pyattimo-0.3.4.tar.gz
Algorithm Hash digest
SHA256 a43244a181b91f168f4fdb3f6d729cff9af5e7854e040f68e2d5dd57794975fe
MD5 acf88fc85c9246bb2831a92970543b00
BLAKE2b-256 3f891fd3318eca6cd44c95412bc1981ca21339cb379617d834beebe180c2e0a3

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1da1c93376f79909204aeee4f6e487b5faaf335aaa3b44c6e26c9a680e1992a
MD5 029cd3add94ca040b83c341844820d46
BLAKE2b-256 2094d7ab9102de905f4c07b2c53605d70eb4cbba5493ba6394935f01224ab16c

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.4-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.4-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7d0b5838bfef5b8fd21230e9123bc6734d3eea8945766e4e73044636445afe18
MD5 c1777b6081e804adac9ee4ce012ea9a7
BLAKE2b-256 2a846f361535fc9cc840aaad0e29ec52b91e96c49fa73ecacf59d6c0356577d6

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2310a7adbb1fcdc2ccf30132b4e3569f8e5ca240edc9a4322e560dbbf4edbe1
MD5 954d7ea280634f27ec12922c6f93b6e9
BLAKE2b-256 86271d2a0f6cd8a595d270e7d8f3b8de2c7570ce422ec084efcf982ea9d3f194

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.4-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.4-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2d9ba8a56635cb30bb16e9d2e6218036826e387a9ef5e3bfa9637350e29dc0fb
MD5 855c8c59f11ec667e668e216d3b6326f
BLAKE2b-256 6425e5d16819b9827a9054e0c4a84dcae97d2079077262e3b20d34ded88c16a8

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.4-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.4-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1523be4b70bff19dba0c5f07c0b3289628e12f2c76374bf67f65921b54f350bb
MD5 39c3e3902458d4f63dab05a0fed68320
BLAKE2b-256 612bfcde6835cbd3f034df06c0120df56787d696bcab7a1727812630cd66db0c

See more details on using hashes here.

File details

Details for the file pyattimo-0.3.4-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.3.4-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 63ed9b8dd36f1767f68cff46d787add4452487221a9fe31f0a8df11080407538
MD5 a79ac058e8f2f0905a4e54e8ef2b379f
BLAKE2b-256 84183e25c9de3b197f1b507b84d742e05f4b398f2c55b042a7d8ab966ad9c7ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page