Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.4.1.tar.gz (167.6 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.4.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.4.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.4.1-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ i686

pyattimo-0.4.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.4.1-cp37-abi3-macosx_11_0_arm64.whl (778.2 kB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.4.1-cp37-abi3-macosx_10_12_x86_64.whl (869.2 kB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.4.1.tar.gz.

File metadata

  • Download URL: pyattimo-0.4.1.tar.gz
  • Upload date:
  • Size: 167.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.0

File hashes

Hashes for pyattimo-0.4.1.tar.gz
Algorithm Hash digest
SHA256 7ec7210c2ec3d5e3a0d6c41a7561e51d96493055d6dfd51c4209b3d4fb6886d2
MD5 ed08ba4f321d8a25e87c900113f2ed65
BLAKE2b-256 6862f4a9052af5a0d44e0474b0ebaa1f817602ec4937edcb7600d566dcac0d48

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fecc593749b5ab1b01f5d394f93a6cae878b891782700e4e7095652c584f5e54
MD5 7ad17871d6ac1264fd0d8c4641579d16
BLAKE2b-256 1cb2be4fe93b7a3e7ded87300840a62fcd741fe42df424f9210aeda0718e5e41

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 29eaf05626065608c417ae3a300187bbb5d25f65591325c2906cac7bc374d088
MD5 21c40ac928f594eabeafdb3f89286c74
BLAKE2b-256 b7cd858886e94f17f3c24fb7ffd1fa371febb30d77314c39c56a295c03dff44f

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.1-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.1-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1365e7947a5f54f4e24b30b30532ee9d17c2bc9e0924af4bfb1e14498a21c036
MD5 e041146eca5648e02765d68afbb5f5db
BLAKE2b-256 6103e889b1cb15decb9eb75f8ca44235a23b273ccb8946401c99516ddbb58cbc

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5625822cb162e671d13e4fb1307665a0067c80ba6e0d428c810eed9e7fac8114
MD5 0be187d00e097d850d63f14bd845e443
BLAKE2b-256 fd75cd75fbda7b6ba17fdbd2c0443390f2c2e41b5ae2eafd6dba3fffbdf4d0eb

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.1-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.1-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f9a81128f8facf02eb900c1a315ef4ce78ae08bcffa0d5843b69cb6d383a549
MD5 e2fa1e02c77b6885a9f0b362212a5942
BLAKE2b-256 55b2d7c093cf9bba29d7f1229c36590f1a3bf32868f79a639eb0542b9cc24a7b

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.1-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.1-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b0b8ccb1704c5d2d5e287db153ac36fd648a73a5ef5a31414f6245e749a70f71
MD5 af19743bab4782e6d71ae22a5dfa0096
BLAKE2b-256 488721be2ac1e8d5f2ffcd9c733e065df487238af92d17ffdd93a65f6e5ce224

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page