Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.4.3.tar.gz (166.3 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.4.3-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (998.6 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.4.3-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (935.9 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.4.3-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (892.5 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ i686

pyattimo-0.4.3-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (904.2 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.4.3-cp37-abi3-macosx_11_0_arm64.whl (751.8 kB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.4.3-cp37-abi3-macosx_10_12_x86_64.whl (857.3 kB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.4.3.tar.gz.

File metadata

  • Download URL: pyattimo-0.4.3.tar.gz
  • Upload date:
  • Size: 166.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for pyattimo-0.4.3.tar.gz
Algorithm Hash digest
SHA256 4fb1869861320b5346f40a33272c65d3dd1c058bfb5e92b3c913043b1427a85b
MD5 b8bf590c6fa4752f4bdb5dc38140440c
BLAKE2b-256 a5d0440be10713d339c3e3cd2653757219304e12fbee599d50f690bae08ca147

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.3-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.3-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ba846670e8f5f4e368a77284cf6ef3d1122076bd25cdf033f13d2623f8bdeae
MD5 54e54b97bc72ec25397041c77f02ae8a
BLAKE2b-256 111696f10c2cad2af57b03e9929aff4a1add0dbfb06e3ef4c5bb7b5cce0b3665

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.3-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.3-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a7088e977fdc1896b1a51be12fa563a086450b1783b97b9d34e87a9f0d7a2463
MD5 6627906f96e8038bb8455476fc8fe6e3
BLAKE2b-256 644ec284a5b9e2d75fb352dd122eb695395d2be2ca3efb75d95c04036b2855ac

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.3-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.3-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1afe59e0fd99d6fa8730f0ed471c75ac812364d6e0ff8d4518d87d8b8732ad46
MD5 976e326b23fb9f178a3c723da2f933b8
BLAKE2b-256 2428e8b3ac574af16683d27044aa888380ab935b9f92f772e254b238413c475a

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.3-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.3-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f3f6f34179739bf14e8dd82777af72540a33f157ac79ad62d1274c092900e36
MD5 74590daa9de8c3f1c3ad88e2f5c814d6
BLAKE2b-256 bdd0b03a51f664aa87ed3f6eca16ec2766d3d6b690a2953b32e05a11d34dedb3

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.3-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.3-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65419dac254e6c03cf7eeb790c101b7f8eecf2d62347093e7728c168ec580ae3
MD5 f4b13ba2d91dc4a65dd4862bc2b19d92
BLAKE2b-256 11212d0a2ffce6c1fd85fbc5e27d009507398b3400e0e2c4e67b9aba619ba9b3

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.3-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.3-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 270324a2789768ff897dfe8c4c832d14b3b31ba74c2cec47c463295205b3e95c
MD5 1bd9b272bdd63c236c70d815269950f8
BLAKE2b-256 caacc77df78c54b1f26669c6419be42f1d76e8fc8847b6fb69682aacf97565de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page